Topological Methods in Nonlinear Analysis

Existence of solutions for a Kirchhoff type fractional differential equations via minimal principle and Morse theory

Nemat Nyamoradi and Yong Zhou

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this paper by using the minimal principle and Morse theory, we prove the existence of solutions to the following Kirchhoff type fractional differential equation: \begin{equation*} \begin{cases} \displaystyle M \bigg (\int_{\mathbb{R}} (|{}_{- \infty} D_t^\alpha u (t)|^2 + b (t) |u(t)|^2 )\, d t \bigg) \\ \qquad \cdot ({}_tD_\infty^{\alpha} ({}_{- \infty} D_t^\alpha u (t) ) + b(t) u (t)) = f (t, u (t)), & t \in \mathbb{R}, \\ u \in H^\alpha (\mathbb{R}), \end{cases} \end{equation*} where $\alpha \in ({1}/{2},1)$, ${}_tD_\infty^{\alpha}$ and ${}_{- \infty} D_t^\alpha$ are the right and left inverse operators of the corresponding Liouville-Weyl fractional integrals of order $\alpha$ respectively, $H^\alpha$ is the classical fractional Sobolev Space, $u \in \mathbb{R}$, $b \colon \mathbb{R} \to \mathbb{R}$, $\inf\limits_{t \in \mathbb{R}} b (t) \gt 0$, $f \colon \mathbb{R}\times \mathbb{R} \to \mathbb{R}$ Carathéodory function and $M\colon \mathbb{R}^+ \to \mathbb{R}^+$ is a function that satisfy some suitable conditions.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 46, Number 2 (2015), 617-630.

Dates
First available in Project Euclid: 21 March 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1458588654

Digital Object Identifier
doi:10.12775/TMNA.2015.061

Mathematical Reviews number (MathSciNet)
MR3494961

Zentralblatt MATH identifier
1360.34017

Citation

Nyamoradi, Nemat; Zhou, Yong. Existence of solutions for a Kirchhoff type fractional differential equations via minimal principle and Morse theory. Topol. Methods Nonlinear Anal. 46 (2015), no. 2, 617--630. doi:10.12775/TMNA.2015.061. https://projecteuclid.org/euclid.tmna/1458588654


Export citation

References

  • O. Agrawal, J. Tenreiro Machado and J. Sabatier, Fractional Derivatives and their Application: Nonlinear Dynamics, Springer–Verlag, Berlin, 2004.
  • C.O. Alves, F.S.J.A. Correa and T.F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), 85–93.
  • S. Aouaoui, Existence of three solutions for some equation of Kirchhoff type involving variable exponents, Appl. Math. Comput. 218 (2012), 7184–7192.
  • A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996), 305–330.
  • T. Bartsch and S.J. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, Nonlinear Anal. 28 (1997), 419–441.
  • K.C. Chang, A variant of mountain pass lemma, Sci. Sinica Ser. A 26 (1983), 1241–1255.
  • M. Gobbino, Quasilinear degenerate parabolic equations of Kirchhoff type, Math. Methods Appl. Sci. 22 (5) (1999), 375–388.
  • R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  • F. Jiao and Y. Zhou, Existence results fro fractional boundary value problem via critical point theory, Internat. J. Bifur. Chaos 22 (4) (2012), 1–17.
  • A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, Vol. 204, Elsevier Science B.V., Amsterdam, (2006).
  • G. Kirchhoff, Vorlesungen uber Mathematische Physik, Mechanik, Teubner, Leipzig (1883).
  • J.Q. Liu, The Morse index of a saddle point, Syst. Sci. Math. Sci. 2 (1989), 32–39.
  • J.Q. Liu and J. Su, Remarks on multiple nontrivial solutions for quasilinear resonant problems, J. Math. Anal. Appl. 258 (2001), 209–222.
  • J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences 74, Springer, Berlin, 1989.
  • K. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley and Sons, New York, 1993.
  • I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
  • P. Rabinowitz, Minimax Method in Critical Point Theory with Applications to Differential Equations, CBMS Amer. Math. Soc., No 65, 1986.
  • J. Sabatier, O. Agrawal and J. Tenreiro Machado, Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering, Springer–Verlag, Berlin, 2007.
  • S. Spagnolo, The Cauchy problem for the Kirchhoff equations, Rend. Sem. Fis. Mat. Milano 62 (1992), 17–51.
  • C. Torres, Existence of solution for a class of fractional Hamiltonian systems, Electronic J. Differential Equations 259 (2013), 1–12.
  • G. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, 2005.
  • Z. Zhang and R. Yuan, Variational approach to solutions for a class of fractional Hamiltonian systems. Math. Method. Appl. Sci. (2013) (Preprint).