Tohoku Mathematical Journal

The isometry groups of compact manifolds with almost negative Ricci curvature

Atsushi Katsuda and Takeshi Kobayashi

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We estimate the order of isometry groups of compact Riemannian manifolds which have negative Ricci curvature except for small portions, in terms of geometric quantities.

Article information

Tohoku Math. J. (2), Volume 70, Number 3 (2018), 391-400.

First available in Project Euclid: 21 September 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53
Secondary: 58

isometry group comparison theorem


Katsuda, Atsushi; Kobayashi, Takeshi. The isometry groups of compact manifolds with almost negative Ricci curvature. Tohoku Math. J. (2) 70 (2018), no. 3, 391--400. doi:10.2748/tmj/1537495353.

Export citation


  • M. T. Anderson, Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math. 102 (1990), no. 2, 429–445.
  • P. Bérard, From vanishing theorems to estimating theorems: The Bochner technique revisited, Bull. Amer. Math. Soc. 19 (1988), 371–406.
  • J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry, New York, North-Holland/Elsevier, 1975.
  • X. Dai, Z. Shen, and G. Wei, Negative Ricci curvature and isometry group, Duke. Math. J. 76 (1994), 59–73.
  • E. Hebey, Sobolev spaces on Riemannian manifolds, Lecture Notes in Mathematics, 1635. Springer-Verlag, Berlin, 1996.
  • H. Huber, Über die Isometriegruppe einer kompakten Mannigfaltigkeiten negativer Krümmung, Helv. Phys. Acta 45 (1972), 277–288.
  • H.-C. Im Hof, Über die Isometriegruppe bei kompakten Mannigflatigkeiten negativer Krümmung, Comment. Math. Helv. 48 (1973), 14–30.
  • S. Ilias, Constantes explicites pour les inégalités de Sobolev sur les variétés riemanniennes compactes, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 2, 151–165.
  • A. Katsuda, The isometry groups of compact manifolds with negative Ricci curvature, Proc. Amer. Math. Soc. 104 (1988), 587–588.
  • M. Maeda, The isometry groups of compact manifolds with non-positive curvature, Proc. Japan. Acad. 51 (1975), 790–794.
  • M. Maeda, Volume estimate of submanifolds in compact Riemannian manifolds, J. Math. Soc. Japan 30 (1978), no. 3, 533–551.
  • P. Petersen, Riemannian geometry, volume 171 of Graduate Texts in Mathematics, Springer, New York, second edition, 2006.
  • S. Rosenberg and D. Yang, Bounds on the fundamental group of a manifold with almost nonnegative Ricci curvature, Japan. Math. Soc. 46 (1994), 267–287.
  • T. Yamaguchi, The isometry groups of manifolds of nonpositive curvature with finite volume, Math. Z. 189 (1985), 185–192.