Tohoku Mathematical Journal

Variational inequalities for perturbations of maximal monotone operators in reflexive Banach spaces

Teffera M. Asfaw and Athanassios G. Kartsatos

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let $X$ be a real reflexive locally uniformly convex Banach space with locally uniformly convex dual space $X^*,$ and let $K$ be a nonempty, closed and convex subset of $X$ with $0$ in its interior. Let $T$ be maximal monotone and $S$ a possibly unbounded pseudomonotone, or finitely continuous generalized pseudomonotone, or regular generalized pseudomonotone operator with domain $K$. Let $\phi$ be a proper, convex and lower semicontinuous function. New results are given concerning the solvability of perturbed variational inequalities involving the operator $T+S$ and the function $\phi$. The associated range results for nonlinear operators are also given, as well asextensions and/or improvements of known results of Kenmochi, Le, Browder, Browder and Hess, De Figueiredo, Zhou, and others.

Article information

Tohoku Math. J. (2), Volume 66, Number 2 (2014), 171-203.

First available in Project Euclid: 9 July 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 47H05: Monotone operators and generalizations

Nonlinear maximal monotone pseudomonotone and strongly quasibounded operators variational inequalities existence problems


Asfaw, Teffera M.; Kartsatos, Athanassios G. Variational inequalities for perturbations of maximal monotone operators in reflexive Banach spaces. Tohoku Math. J. (2) 66 (2014), no. 2, 171--203. doi:10.2748/tmj/1404911860.

Export citation


  • F. E. Browder and P. Hess, Nonlinear mappings of monotone type in Banach spaces, J. Funct. Anal. 11 (1972), 251–294.
  • V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff Int. Publ., Leyden (The Netherlands), 1975.
  • H. Brézis, M. G. Crandall and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach spaces, Comm. Pure Appl. Math. 23 (1970), 123–144.
  • F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure Math. 18 (1976), 1–308.
  • I. Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, Kluwer Acad. Publ., Dordrecht, 1990.
  • Z. Naniewicz and P. D. Panagiotopoulos, Mathematical theory of hemivariational inequalities and applications, Monographs and Textbooks in Pure and Applied Mathematics, 188, Marcel Dekker, Inc., New York, 1995.
  • D. Pascali and S. Sburlan, Nonlinear mappings of monotone type, Sijthoff and Noordhoof, Bucharest, 1978.
  • E. Zeidler, Nonlinear functional analysis and its applications, II/B, Springer-Verlag, New York, 1990.
  • V. Barbu, Nonlinear differential equations of monotone type in Banach spaces, Springer Monogr. Math., Springer, New York, 2010.
  • H. Brézis, Équations et inéquations non-linéaires dans les espaces véctoriels en dualité, Ann. Inst. Fourier (Grenoble) 18 (1968), 115–176.
  • F. E. Browder, Existence and approximation of solutions of nonlinear variational inequalities, Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 1080–1086.
  • F. E. Browder and H. Brézis, Strongly nonlinear parabolic variational inequalities, Proc. Nat. Acad. Sci. U.S.A. 77 (1980), 713–715.
  • P. Hartman and G. Stampacchia, On some nonlinear elliptic differential functional equations, Acta Math. 115 (1966), 153–188.
  • N. Kenmochi, Nonlinear operators of monotone type in reflexive Banach spaces and nonlinear perturbations, Hiroshima Math. J. 4 (1974), 229–263.
  • D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Pure Appl. Math. 88, Academic Press, New York, 1980.
  • J. Kobayashi and M. Otani, Topological degree for $({\rm S})\sb +$-mappings with maximal monotone perturbations and its applications to variational inequalities, Nonlinear Anal. 59 (2004), 147–172.
  • J. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493–519.
  • G. Stampacchia, Variational inequalities, Actes du Congrès International des Mathématiciens (Nice) (1970), 877–883.
  • G. J. Minty, Nonlinear monotone operators in Hilbert Space, Duke Math. J. 29 (1962), 341–346.
  • G. J. Minty, On a “monotonicity” method for the solution of non-linear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1038–1041.
  • J. J. Moreau, Principes extrémaux pour le problème de la naissance de la cavitation, J. Mecanique 5 (1966), 439–470.
  • R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, New Jersey, 1970.
  • B. A. Ton, Nonlinear operators on convex subsets of Banach spaces, Math. Ann. 181 (1969), 35–44.
  • N. Kenmochi, Pseudomonotone operators and nonlinear ellpitic boundary value problems, J. Math. Soc. Japan 27 (1975), 121–149.
  • N. Kenmochi, Monotonicity and compactness methods for nonlinear variational inequalities, Handb. Differ. Equ., IV, 203–298, Elsevier/North-Holland, Amsterdam, 2007.
  • Z. Guan, A. G. Kartsatos and I. V. Skrypnik, Ranges of densely defined generalized pseudomonotone perturbations of maximal monotone operators, J. Differential Equations 188 (2003), 332–351.
  • Z. Guan and A. G. Kartsatos, Ranges of generalized pseudo-monotone perturbations of maximal monotone operators in reflexive Banach spaces, Contemp. Math. 204 (1997), 107–123.
  • V. K. Le, A range and existence theorem for pseudomonotone perturbations of maximal monotone operators, Proc. Amer. Math. Soc. 139 (2011), 1645–1658.
  • Y. Y. Zhou, Some results about perturbed maximal monotone mappings, Comput. Math. Appl. 51 (2006), 487–496.
  • B. T. Kien, M. M. Wong, N. C. Wong and J. C. Yao, Solution existence of variational inequalities with pseudomonotone operators in the sense of Brézis, J. Optim. Theory Appl. 140 (2009), 249–263.
  • S. Carl, V. Y. Le and D. Motreanu, Existence, comparison and compactness results for quasilinear variational-hemivariational inequalities, Int. J. Math. Math. Sci. 3 (2005), 401–417.
  • S. Carl, Existence and comparison results for noncoercive and nonmonotone multivalued elliptic problems, Nonlinear Anal. 65 (2006), 1532–1546.
  • S. Carl and D. Motreanu, General comparison principle for quasilinear elliptic inclusions, Nonlinear Anal. 70 (2009), 1105–1112.
  • T. M. Asfaw and A. G. Kartsatos, A Browder topological degree theory for multivalued pseudomonotone perturbations of maximal monotone operators in reflexive Banach spaces, Adv. Math. Sci. Appl. 22 (2012), 91–148.
  • D. R. Adhikari and A. G. Kartsatos, Topological degree theories and nonlinear operator equations in Banach spaces, Nonlinear Anal. 69 (2008), 1235–1255.
  • F. E. Browder, On the principle of H. Brézis and its applications, J. Funct. Anal. 25 (1977), 356–365.
  • R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75–88.
  • D. G. De Figueiredo, An existence theorem for pseudo-monotone operator equations, J. Math. Anal. Appl. 34 (1971), 151–156.
  • A. G. Kartsatos and J. Quarcoo, A new topological degree theory for densely defined $(S_+)_L$-perturbations of multivalued maximal monotone operators in reflexive separable Banach spaces, Nonlinear Anal. 69 (2008), 2339–2354.
  • A. G. Kartsatos and I.V. Skrypnik, A new topological degree theory for densely defined quasibounded $(\tilde S\sb +)$-perturbations of multivalued maximal monotone operators in reflexive Banach spaces, Abstr. Appl. Anal. (2005), no. 2, 121–158.