Tohoku Mathematical Journal

Visible actions on flag varieties of type C and a generalization of the Cartan decomposition

Yuichiro Tanaka

Full-text: Open access

Abstract

We give a generalization of the Cartan decomposition for connected compact Lie groups of type C motivated by the work on visible actions of T. Kobayashi [J. Math. Soc. Japan, 2007] for type A groups. Let $G$ be a compact simple Lie group of type C, $K$ a Chevalley--Weyl involution-fixed point subgroup and $L,H$ Levi subgroups. We firstly show that $G=LKH$ holds if and only if either Case I: $(G,H)$ and $(G,L)$ are both symmetric pairs or Case II: $L$ is a Levi subgroup of maximal dimension and $H$ is an arbitrary maximal Levi subgroup up to switch of $L,H$. This classification gives a visible action of $L$ on the generalized flag variety $G/H$, as well as that of the $H$-action on $G/L$ and of the $G$-action on the direct product of $G/L$ and $G/H$. Secondly, we find a generalized Cartan decomposition $G=LBH$ explicitly, where $B$ is a subset of $K$. An application to multiplicity-free theorems of representations is also discussed.

Article information

Source
Tohoku Math. J. (2), Volume 65, Number 2 (2013), 281-295.

Dates
First available in Project Euclid: 25 June 2013

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1372182727

Digital Object Identifier
doi:10.2748/tmj/1372182727

Mathematical Reviews number (MathSciNet)
MR3079290

Zentralblatt MATH identifier
1277.22014

Subjects
Primary: 22E46: Semisimple Lie groups and their representations
Secondary: 32A37: Other spaces of holomorphic functions (e.g. bounded mean oscillation (BMOA), vanishing mean oscillation (VMOA)) [See also 46Exx] 53C30: Homogeneous manifolds [See also 14M15, 14M17, 32M10, 57T15]

Keywords
Cartan decomposition multiplicity-free representation semisimple Lie group flag variety visible action herringbone stitch

Citation

Tanaka, Yuichiro. Visible actions on flag varieties of type C and a generalization of the Cartan decomposition. Tohoku Math. J. (2) 65 (2013), no. 2, 281--295. doi:10.2748/tmj/1372182727. https://projecteuclid.org/euclid.tmj/1372182727


Export citation

References

  • S. Helgason, Differential geometry, Lie groups and symmetric spaces, Pure Appl. Math. 80, Academic Press, New York-London, 1978.
  • B. Hoogenboom, Intertwining functions on compact Lie groups, CWI Tract 5, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1984.
  • A. W. Knapp, Lie groups beyond an introduction, 2nd ed., Progr. Math. 140, Birkhäuser Boston, Inc., Boston, MA, 2002.
  • T. Kobayashi and T. Oshima, Lie groups and representation theory (Japanese), Iwanami, 2005.
  • T. Kobayashi, Geometry of multiplicity-free representations of GL$(n)$, visible actions on flag varieties, and triunity, Acta Appl. Math. 81 (2004), 129–146.
  • T. Kobayashi, Multiplicity-free representations and visible actions on complex manifolds, Publ. Res. Inst. Math. Sci. 41 (2005), 497–549.
  • T. Kobayashi, Propagation of multiplicity-freeness property for holomorphic vector bundles, Progr. Math., Birkhäuser, Boston, 2013 (in press), math. RT/0607004.
  • T. Kobayashi, A generalized Cartan decomposition for the double coset space (U$(n_1)$ $\times$ U$(n_2)\times$ U$(n_3))$ $\backslash $U$(n)/$(U$(p)\times$U$(q))$, J. Math. Soc. Japan 59 (2007), 669–691.
  • T. Kobayashi, Visible acions on symmetric spaces, Transform. Groups 12 (2007), 671–694.
  • T. Kobayashi, Multiplicity-free theorems of the restriction of unitary highest weight modules with respect to reductive symmetric pairs, in: Representation Theory and Automorphic Forms, 45–109, Progr. Math. 255, Birkhäuser, Boston, MA, 2008, math. RT/0607002.
  • K. Koike and I. Terada, Young diagrammatic methods for the representation theory of the classical groups of type $B_n,C_n,D_n$, J. Algebra 107 (1987), 466–511.
  • K. Koike and I. Terada, Young diagrammatic methods for the restriction of representations of complex classical Lie groups to reductive subgroups of maximal rank, Adv. Math. 79 (1990), 104–135.
  • P. Littelmann, On spherical double cones, J. Algebra 166 (1994), 142–157.
  • T. Matsuki, Double coset decomposition of algebraic groups arising from two involutions. I, J. Algebra 175 (1995), 865–925.
  • T. Matsuki, Double coset decompositions of reductive Lie groups arising from two involutions, J. Algebra 197 (1997), 49–91.
  • A. Sasaki, Visible action on irreducible multiplicity-free spaces, Int. Math. Res. Not. IMRN (2009), 3445–3466.
  • A. Sasaki, A characterization of non-tube type Hermitian symmetric spaces by visible actions, Geom. Dedicata 145 (2010), 151–158.
  • A. Sasaki, A generalized Cartan decomposition for the double coset space SU$(2n+1)$ $\backslash$ SL$(2n+1,\boldsymbol{C})/$Sp$(n,\boldsymbol{C})$, J. Math. Sci. Univ. Tokyo 17 (2010), 201–215.
  • J. R. Stembridge, Multiplicity-free products and restrictions of Weyl characters, Represent. Theory 7 (2003), 404–439.
  • Y. Tanaka, Visible actions on flag varieties of type B and a generalization of the Cartan decomposition, to appear in Bull. Aust. Math. Soc., DOI:10.1017/S0004972712000615.
  • Y. Tanaka, Visible actions on flag varieties of type D and a generalization of the Cartan decomposition, to appear in J. Math. Soc. Japan.
  • J. A. Wolf, Harmonic analysis on commutative spaces, Math. Surveys and Monogr. 142, American Mathematical Society, Providence, RI, 2007.