Tohoku Mathematical Journal

Automorphisms of an irregular surface of general type acting trivially in cohomology, II

Jin-Xing Cai

Full-text: Open access

Abstract

Let $S$ be a complex nonsingular minimal projective surface of general type with $q(S)=2$, and let $G$ be the group of the automorphisms of $S$ acting trivially on $H^2(S, \boldsybmol{Q})$. In this note we classify explicitly pairs $(S, G)$ with $G$ of order four.

Article information

Source
Tohoku Math. J. (2), Volume 64, Number 4 (2012), 593-605.

Dates
First available in Project Euclid: 20 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1356038980

Digital Object Identifier
doi:10.2748/tmj/1356038980

Mathematical Reviews number (MathSciNet)
MR2948212

Zentralblatt MATH identifier
1259.14045

Subjects
Primary: 14J50: Automorphisms of surfaces and higher-dimensional varieties
Secondary: 14J29: Surfaces of general type

Keywords
Surfaces of general type automorphism groups cohomology

Citation

Cai, Jin-Xing. Automorphisms of an irregular surface of general type acting trivially in cohomology, II. Tohoku Math. J. (2) 64 (2012), no. 4, 593--605. doi:10.2748/tmj/1356038980. https://projecteuclid.org/euclid.tmj/1356038980


Export citation

References

  • A. Beauville, L'application canonique pour les surfaces de type qénéral, Invent. Math. 55 (1979), 121–140.
  • A. Beauville, L'inegalite $p_g\ge 2q-4$ pour les surfaces de type général, Appendice à O. Debarre: “Inégalités numériques pour les surfaces de type général”, Bull. Soc. Math. France 110 (1982), 343–346.
  • W. Barth, C. Peters and A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), Springer-Verlag, Berlin, 1984.
  • J.-X. Cai, Automorphisms of a surface of general type acting trivially in cohomology, Tohoku Math. J. 56 (2004), 341–355.
  • J.-X. Cai, Automorphisms of an irregular surface of general type acting trivially in cohomology, J. Algebra 367 (2012), 95–104.
  • O. Debarre, Inégalités numériques pour les surfaces de type général, Bull. Soc. Math. France 110 (1982), 319–346.
  • T. Fujita, On Kaehler fibre spaces over curves, J. Mat. Soc. Japan 30 (1978), 779–794.
  • R. Hartshorne, Algebraic Geometry, GTM 52, Springer-Verlag, 1977.
  • F. Serrano, Isotrivial fibred surfaces, Ann. Mat. Pura Apl. (4) 171 (1996), 63–81.
  • G. Xiao, L'irrégularité des surfaces de type général dont le système canonique est composé d'un pinceau, Compositio Math. 56 (1985), 251–257.
  • G. Xiao, Algebraic surfaces with high canonical degree, Math. Ann. 274 (1986), 473–483.