Tohoku Mathematical Journal

On Tauber's second Tauberian theorem

Ricardo Estrada and Jasson Vindas

Full-text: Open access

Abstract

We study Tauberian conditions for the existence of Cesàro limits in terms of the Laplace transform. We also analyze Tauberian theorems for the existence of distributional point values in terms of analytic representations. The development of these theorems is parallel to Tauber's second theorem on the converse of Abel's theorem. For Schwartz distributions, we obtain extensions of many classical Tauberians for Cesàro and Abel summability of functions and measures. We give general Tauberian conditions in order to guarantee $(\mathrm{C},\beta)$ summability for a given order $\beta$. The results are directly applicable to series and Stieltjes integrals, and we therefore recover the classical cases and provide new Tauberians for the converse of Abel's theorem where the conclusion is Cesàro summability rather than convergence. We also apply our results to give new quick proofs of some theorems of Hardy-Littlewood and Szàsz for Dirichlet series.

Article information

Source
Tohoku Math. J. (2), Volume 64, Number 4 (2012), 539-560.

Dates
First available in Project Euclid: 20 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1356038977

Digital Object Identifier
doi:10.2748/tmj/1356038977

Mathematical Reviews number (MathSciNet)
MR3008237

Zentralblatt MATH identifier
1271.40001

Subjects
Primary: 40E05: Tauberian theorems, general
Secondary: 40G05: Cesàro, Euler, Nörlund and Hausdorff methods 40G10: Abel, Borel and power series methods 46F10: Operations with distributions 46F20: Distributions and ultradistributions as boundary values of analytic functions [See also 30D40, 30E25, 32A40]

Keywords
Tauberian theorems the converse of Abel's theorem Hardy-Littlewood Tauberians Szász Tauberians distributional point values boundary behavior of analytic functions asymptotic behavior of generalized functions Laplace transform Cesàro summability

Citation

Estrada, Ricardo; Vindas, Jasson. On Tauber's second Tauberian theorem. Tohoku Math. J. (2) 64 (2012), no. 4, 539--560. doi:10.2748/tmj/1356038977. https://projecteuclid.org/euclid.tmj/1356038977


Export citation

References

  • K. Ananda Rau, On the converse of Abel's theorem, J. London Math. Soc. 3 (1928), 349–355.
  • H. Bremermann, Distributions, complex variables and Fourier transforms, Addison-Wesley, Reading, Massachusetts, 1965.
  • K. Chandrasekharan and S. Minakshisundaram, Typical means, Oxford University Press, Oxford, 1952.
  • F. Constantinescu, Boundary values of analytic functions, Comm. Math. Phys. 7 (1968), 225–233.
  • Ju. N. Dro\u z\u zinov and B. I. Zav'jalov, Quasiasymptotic behavior of generalized functions, and Tauberian theorems in the complex domain, (Russian) Mat. Sb. (N.S.) 102 (144) (1977), 372–390.
  • Yu. N. Drozhzhinov and B. I. Zav'yalov, Theorems of Hardy-Littlewood type for measures of variable sign in a cone, Sb. Math. 186 (1995), 675–693.
  • R. Estrada, The Cesàro behaviour of distributions, Proc. Roy. Soc. London Ser. A 454 (1998), 2425–2443.
  • R. Estrada, Boundary values of analytic functions without distributional point values, Tamkang J. Math. 35 (2004), 53–60.
  • R. Estrada, A distributional version of the Ferenc Lukács theorem, Sarajevo J. Math. 1 (2005), 1–17.
  • R. Estrada and R. P. Kanwal, A distributional approach to asymptotics, Theory and applications, Second edition, Birkhäuser, Boston, 2002.
  • R. Estrada and J. Vindas, On the point behavior of Fourier series and conjugate series, Z. Anal. Anwend. 29 (2010), 487–504.
  • G. H. Hardy, Divergent Series, Clarendon Press, Oxford, 1949.
  • G. H. Hardy and J. E. Littlewood, Contributions to the arithmetic theory of series, Proc. London Math. Soc. 11 (1913), 411–478.
  • G. H. Hardy and J. E. Littlewood, Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive, Proc. London Math. Soc. 13 (1914), 174–191.
  • G. H. Hardy and J. E. Littlewood, Some theorems concerning Dirichlet's series, Messenger of Mathematics 43 (1914), 134–147.
  • A. E. Ingham, The equivalence theorem for Cesàro and Riesz summability, Publ. Ramanujan Inst. 1 (1968), 107–113.
  • J. Karamata, Über die Hardy-Littlewoodschen umkehrungen des Abelschen stetigkeitssatzes, Math. Z. 32 (1930), 319–320.
  • J. Karamata, Neuer beweis und verallgemeinerung der Tauberschen sätze, welche die Laplacesche and Stieltjessche transformation betreffen, J. Reine Angew. Math. 164 (1931), 27–39.
  • J. Korevaar, Tauberian theory. A century of developments, Grundlehren der Mathematischen Wissenschaften, 329, Springer-Verlag, Berlin, 2004.
  • J. E. Littlewood, The converse of Abel's theorem on power series, Proc. London Math. Soc. 9 (1911), 434–448.
  • S. Łojasiewicz, Sur la valuer et la limite d'une distribution en un point, Studia Math. 16 (1957), 1–36.
  • O. P. Misra and J. Lavoine, Transform analysis of generalized functions, North-Holland, Amsterdam, 1986.
  • J. Peetre, On the value of a distribution at a point, Portugal Math. 27 (1968), 149–159.
  • S. Pilipović and B. Stanković, Wiener Tauberian theorems for distributions, J. London Math. Soc. 47 (1993), 507–515.
  • S. Pilipović and B. Stanković, Tauberian theorems for integral transforms of distributions, Acta Math. Hungar. 74 (1997), 135–153.
  • S. Pilipović, B. Stanković and A. Takači, Asymptotic behaviour and Stieltjes transformation of distributions, Teubner-Texte zur Mathematik, Leipzig, 1990.
  • S. Pilipović, B. Stanković and J. Vindas, Asymptotic behavior of generalized functions, Series on Analysis, Applications and Computations, 5, World Scientific Publishing Co., Hackensack, New Jersey, 2011.
  • Ch. Pommerenke, Boundary behaviour of conformal maps, Springer-Verlag, Berlin, 1992.
  • C. T. Rajagopal, Note on some Tauberian theorems of O. Szász, Pacific J. Math. 2 (1952), 377–384.
  • A. Rényi, On a Tauberian theorem of O. Szász, Acta Univ. Szeged. Sect. Sci. Math. 11 (1946), 119–123.
  • L. Schwartz, Théorie des distributions, Hermann, Paris, 1966.
  • O. Szász, Verallgemeinerung eines Littlewoodschen satzes über potenzreihen, J. London Math. Soc. 3 (1928), 254–262.
  • O. Szász, Generalization of two theorems of Hardy and Littlewood on power series, Duke Math. J. 1 (1935), 105–111.
  • O. Szász, Converse theorems of summability for Dirichlet's series, Trans. Amer. Math. Soc. 39 (1936), 117–130.
  • O. Szász, On a Tauberian theorem for Abel summability, Pacific J. Math. 1 (1951), 117–125.
  • A. Tauber, Ein satz aus der theorie der unendlichen reihen, Monatsh. Math. Phys. 8 (1897), 273–277.
  • J. Vindas, Structural theorems for quasiasymptotics of distributions at infinity, Publ. Inst. Math. (Beograd) (N.S.) 84 (98), 159–174.
  • J. Vindas, Local behavior of distributions and applications, Dissertation, Louisiana State University, Baton Rouge, 2009.
  • J. Vindas, The structure of quasiasymptotics of Schwartz distributions, Linear and non-linear theory of generalized functions and its applications, pp. 297–314, Banach Center Publ. 88, Polish Acad. Sci. Inst. Math., Warsaw, 2010.
  • J. Vindas and R. Estrada, Distributional point values and convergence of Fourier series and integrals, J. Fourier. Anal. Appl. 13 (2007), 551–576.
  • J. Vindas and R. Estrada, A Tauberian theorem for distributional point values, Arch. Math. (Basel) 91 (2008), 247–253.
  • J. Vindas and R. Estrada, On the order of summability of the Fourier inversion formula, Anal. Theory Appl. 26 (2010), 13–42.
  • J. Vindas and S. Pilipović, Structural theorems for quasiasymptotics of distributions at the origin, Math. Nachr. 282 (2009), 1584–1599.
  • V. S. Vladimirov, A multidimensional generalization of the Tauberian theorem of Hardy and Littlewood, Math. USSR-Izv. 10 (1976), 1031–1048.
  • V. S. Vladimirov, Methods of the theory of generalized functions, Taylor & Francis, London, 2002.
  • V. S. Vladimirov, Yu. N. Drozhzhinov and B. I. Zavialov, Tauberian theorems for generalized functions, Kluwer Academic Publishers, Dordrecht, 1988.
  • D. V. Widder, The Laplace transform, Princeton Univ. Press, Princeton, 1941.
  • N. Wiener, Tauberian theorems, Ann. of Math. 33 (1932), 1–100.