Tohoku Mathematical Journal
- Tohoku Math. J. (2)
- Volume 64, Number 2 (2012), 195-222.
Biharmonic integral $\mathcal{C}$-parallel submanifolds in 7-dimensional Sasakian space forms
Full-text: Open access
Abstract
We find the characterization of maximum dimensional proper-biharmonic integral $\mathcal{C}$-parallel submanifolds of a Sasakian space form and then we classify such submanifolds in a 7-dimensional Sasakian space form. Working in the sphere $\boldsymbol{S}^7$ we explicitly find all 3-dimensional proper-biharmonic integral $\mathcal{C}$-parallel submanifolds. We also determine the proper-biharmonic parallel Lagrangian submanifolds of $\boldsymbol{C}P^3$.
Article information
Source
Tohoku Math. J. (2), Volume 64, Number 2 (2012), 195-222.
Dates
First available in Project Euclid: 2 July 2012
Permanent link to this document
https://projecteuclid.org/euclid.tmj/1341249371
Digital Object Identifier
doi:10.2748/tmj/1341249371
Mathematical Reviews number (MathSciNet)
MR2948819
Zentralblatt MATH identifier
1258.53059
Subjects
Primary: 53C42: Immersions (minimal, prescribed curvature, tight, etc.) [See also 49Q05, 49Q10, 53A10, 57R40, 57R42]
Secondary: 53B25: Local submanifolds [See also 53C40]
Keywords
Biharmonic submanifolds Sasakian space forms
Citation
Fetcu, Dorel; Oniciuc, Cezar. Biharmonic integral $\mathcal{C}$-parallel submanifolds in 7-dimensional Sasakian space forms. Tohoku Math. J. (2) 64 (2012), no. 2, 195--222. doi:10.2748/tmj/1341249371. https://projecteuclid.org/euclid.tmj/1341249371
References
- K. Arslan, R. Ezentas, C. Murathan and T. Sasahara, Biharmonic anti-invariant submanifolds in Sasakian space forms, Beiträge Algebra Geom. 48 (2007), 191–207. Mathematical Reviews (MathSciNet): MR2326409
- A. Arvanitoyeorgos, F. Defever, G. Kaimakamis and V. J. Papantoniou, Biharmonic Lorentz hypersurfaces in $E_1^4$, Pacific J. Math. 229 (2007), 293–305. Mathematical Reviews (MathSciNet): MR2276512
Zentralblatt MATH: 1153.53011
Digital Object Identifier: doi:10.2140/pjm.2007.229.293 - A. Arvanitoyeorgos, F. Defever and G. Kaimakamis, Hypersurfaces of $E_s^4$ with proper mean curvature vector, J. Math. Soc. Japan 59 (2007), 797–809. Mathematical Reviews (MathSciNet): MR2344828
Zentralblatt MATH: 1129.53018
Digital Object Identifier: doi:10.2969/jmsj/05930797
Project Euclid: euclid.jmsj/1191591858 - C. Baikoussis and D. E. Blair, 2-type integral surfaces in $\boldsymbol{S}^5(1)$, Tokyo J. Math. 2 (1991), 345–356. Mathematical Reviews (MathSciNet): MR1138173
Zentralblatt MATH: 0763.53055
Digital Object Identifier: doi:10.3836/tjm/1270130378
Project Euclid: euclid.tjm/1270130378 - C. Baikoussis and D. E. Blair, 2-type flat integral submanifolds in $\boldsymbol{S}^7(1)$, Hokkaido Math. J. 24 (1995), 473–490.
- C. Baikoussis, D. E. Blair and T. Koufogiorgos, Integral submanifolds of Sasakian space forms $\bar{M}^7$, Results Math. 27 (1995), 207–226. Mathematical Reviews (MathSciNet): MR1331095
- A. Balmuş, Biharmonic maps and submanifolds, Ph. D. Thesis, Geometry Balkan Press, Bucureşti, DGDS Monographs 10, 2009, http://www.mathem.pub.ro/dgds/mono/dgdsmono.htm. Mathematical Reviews (MathSciNet): MR2819607
- A. Balmuş, S. Montaldo and C. Oniciuc, Classification results for biharmonic submanifolds in spheres, Israel J. Math. 168 (2008), 201–220. Mathematical Reviews (MathSciNet): MR2448058
Zentralblatt MATH: 1172.58004
Digital Object Identifier: doi:10.1007/s11856-008-1064-4 - A. Balmuş, S. Montaldo and C. Oniciuc, Properties of biharmonic submanifolds in spheres, J. Geom. Symmetry Phys. 17 (2010), 87–102.
- D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics 203, Birkhäuser, Boston, 2002. Mathematical Reviews (MathSciNet): MR1874240
- R. Caddeo, S. Montaldo and C. Oniciuc, Biharmonic submanifolds in spheres, Israel J. Math. 130 (2002), 109–123. Mathematical Reviews (MathSciNet): MR1919374
Zentralblatt MATH: 1038.58011
Digital Object Identifier: doi:10.1007/BF02764073 - R. Caddeo, S. Montaldo and P. Piu, Biharmonic curves on a surface, Rend. Mat. Appl. (7) 21 (2001), 143–157.
- B. Y. Chen, A report on submanifolds of finite type, Soochow J. Math. 22 (1996), 117–337.
- B. Y. Chen, Classification of marginally trapped Lorentzian flat surfaces in $\boldsymbol{E}^4_2$ and its application to biharmonic surfaces, J. Math. Anal. Appl. 340 (2008), 861–875. Mathematical Reviews (MathSciNet): MR2390893
Digital Object Identifier: doi:10.1016/j.jmaa.2007.09.021 - F. Dillen and L. Vrancken, $\mathcal{C}$-totally real submanifolds of $\boldsymbol{S}^7(1)$ with non-negative sectional curvature, Math. J. Okayama Univ. 31 (1989), 227–242. Mathematical Reviews (MathSciNet): MR1043365
- I. Dimitric, Submanifolds of $\boldsymbol{E}^m$ with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica 20 (1992), 53–65.
- J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160. Mathematical Reviews (MathSciNet): MR164306
Zentralblatt MATH: 0122.40102
Digital Object Identifier: doi:10.2307/2373037 - D. Fetcu, E. Loubeau, S. Montaldo and C. Oniciuc, Biharmonic submanifolds of $\boldsymbol{C}P^n$, Math. Z. 266 (2010), 505–531. Mathematical Reviews (MathSciNet): MR2719418
Zentralblatt MATH: 1203.58002
Digital Object Identifier: doi:10.1007/s00209-009-0582-z - D. Fetcu and C. Oniciuc, Explicit formulas for biharmonic submanifolds in non-Euclidean 3-spheres, Abh. Math. Sem. Univ. Hamburg 77 (2007), 179–190. Mathematical Reviews (MathSciNet): MR2379337
- D. Fetcu and C. Oniciuc, Explicit formulas for biharmonic submanifolds in Sasakian space forms, Pacific J. Math. 240 (2009), 85–107. Mathematical Reviews (MathSciNet): MR2485475
Zentralblatt MATH: 1167.53024
Digital Object Identifier: doi:10.2140/pjm.2009.240.85 - D. Fetcu and C. Oniciuc, Biharmonic hypersurfaces in Sasakian space forms, Differential Geom. Appl. 27 (2009), 713–722. Mathematical Reviews (MathSciNet): MR2552680
Zentralblatt MATH: 1188.53066
Digital Object Identifier: doi:10.1016/j.difgeo.2009.03.011 - D. Fetcu and C. Oniciuc, A note on integral $\mathcal{C}$-parallel submanifolds in $\boldsymbol{S}^7(c)$, Rev. Un. Mat. Argentina 52 (2011), 33–45.
- T. Ichiyama, J. Inoguchi and H. Urakawa, Bi-harmonic maps and bi-Yang-Mills fields, Note Mat. 28 (2008), 233–275. Mathematical Reviews (MathSciNet): MR2640583
- J. Inoguchi, Submanifolds with harmonic mean curvature in contact 3-manifolds, Colloq. Math. 100 (2004), 163–179. Mathematical Reviews (MathSciNet): MR2107514
Zentralblatt MATH: 1076.53065
Digital Object Identifier: doi:10.4064/cm100-2-2 - G. Y. Jiang, 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A7 (1986), 389–402. Mathematical Reviews (MathSciNet): MR886529
- S. Montaldo and C. Oniciuc, A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina 47 (2006), 1–22.
- H. Naitoh, Parallel submanifolds of complex space forms I, Nagoya Math. J. 90 (1983), 85–117. Mathematical Reviews (MathSciNet): MR702254
Zentralblatt MATH: 0509.53046
Project Euclid: euclid.nmj/1118787179 - Y. L. Ou, On conformal biharmonic immersions, Ann. Global Anal. Geom. 36 (2009), 133–142. Mathematical Reviews (MathSciNet): MR2529469
Zentralblatt MATH: 1178.53054
Digital Object Identifier: doi:10.1007/s10455-008-9153-5 - Y. L. Ou, Biharmonic hypersurfaces in Riemannian manifolds, Pacific J. Math. 248 (2010), 217–232. Mathematical Reviews (MathSciNet): MR2734173
Zentralblatt MATH: 1205.53066
Digital Object Identifier: doi:10.2140/pjm.2010.248.217 - S. Tanno, Sasakian manifolds with constant $\varphi$-holomorphic sectional curvature, Tôhoku Math. J. 21 (1969), 501–507. Mathematical Reviews (MathSciNet): MR251667
Digital Object Identifier: doi:10.2748/tmj/1178242960
Project Euclid: euclid.tmj/1178242960 - T. Sasahara, Legendre surfaces in Sasakian space forms whose mean curvature vectors are eigenvectors, Publ. Math. Debrecen 67 (2005), 285–303. Mathematical Reviews (MathSciNet): MR2162123
- K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics 3, World Scientific Publishing Co., Singapore, 1984. Mathematical Reviews (MathSciNet): MR794310
- W. Zhang, New examples of biharmonic submanifolds in $\boldsymbol{C}P^n$ and $\boldsymbol{S}^{2n+1}$, An. \c Stiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 57 (2011), 207–218.
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Classification of biharmonic $\mathcal{C}$-parallel Legendrian submanifolds in 7-dimensional Sasakian space forms
Sasahara, Toru, Tohoku Mathematical Journal, 2019 - On the Geometry of Biharmonic Submanifolds in Sasakian Space Forms
Fetcu, Dorel and Oniciuc, Cezar, Journal of Geometry and Symmetry in Physics, 2009 - On the Geometry of Biharmonic Submanifolds in Sasakian Space Forms
Fetcu, Dorel and Oniciuc, Cezar, , 2009
- Classification of biharmonic $\mathcal{C}$-parallel Legendrian submanifolds in 7-dimensional Sasakian space forms
Sasahara, Toru, Tohoku Mathematical Journal, 2019 - On the Geometry of Biharmonic Submanifolds in Sasakian Space Forms
Fetcu, Dorel and Oniciuc, Cezar, Journal of Geometry and Symmetry in Physics, 2009 - On the Geometry of Biharmonic Submanifolds in Sasakian Space Forms
Fetcu, Dorel and Oniciuc, Cezar, , 2009 - Biharmonic PNMC submanifolds in spheres
Balmuş, Adina, Montaldo, Stefano, and Oniciuc, Cezar, Arkiv för Matematik, 2013 - Biharmonic submanifolds in non-Sasakian contact metric 3-manifolds
Markellos, Michael and Papantoniou, Vassilis J., Kodai Mathematical Journal, 2011 - Integral Submanifolds in Three-Sasakian Manifolds Whose Mean Curvature Vector Fields are Eigenvectors of the Laplace Operator
Fetcu, Dorel, , 2008 - Submanifolds with constant scalar curvature in a unit sphere
Guo, Xi and Li, Haizhong, Tohoku Mathematical Journal, 2013 - Second variation formula and the stability of Legendrian minimal submanifolds in Sasakian manifolds
Kajigaya, Tor, Tohoku Mathematical Journal, 2013 - Hamiltonian systems on submanifolds
Fukuda, T. and Janeczko, S., , 2018 - 3-dimensional submanifolds of spheres with parallel mean curvature vector
Cheng, Qing-Ming and Jiang, Bin, Tsukuba Journal of Mathematics, 1992