Tohoku Mathematical Journal

Web Markov skeleton processes and their applications

Yuting Liu, Zhi-Ming Ma, and Chuan Zhou

Full-text: Open access

Abstract

We propose and discuss a new class of processes, web Markov skeleton processes (WMSP), arising from the information retrieval on the Web. The framework of WMSP covers various known classes of processes, and it contains also important new classes of processes. We explore the definition, the scope and the time homogeneity of WMSPs, and discuss in detail a new class of processes, mirror semi-Markov processes. In the last section we briefly review some applications of WMSPs in computing page importance on the Web.

Article information

Source
Tohoku Math. J. (2), Volume 63, Number 4 (2011), 665-695.

Dates
First available in Project Euclid: 6 January 2012

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1325886286

Digital Object Identifier
doi:10.2748/tmj/1325886286

Mathematical Reviews number (MathSciNet)
MR2872961

Zentralblatt MATH identifier
1236.60078

Subjects
Primary: 60J75: Jump processes
Secondary: 60G55: Point processes 60K15: Markov renewal processes, semi-Markov processes 68P20: Information storage and retrieval

Keywords
Web Markov skeleton process semi-Markov process mirror semi-Markov process information retrieval on the Web

Citation

Liu, Yuting; Ma, Zhi-Ming; Zhou, Chuan. Web Markov skeleton processes and their applications. Tohoku Math. J. (2) 63 (2011), no. 4, 665--695. doi:10.2748/tmj/1325886286. https://projecteuclid.org/euclid.tmj/1325886286


Export citation

References

  • Y. Bao, G. Feng, T. Liu, Z. M. Ma and Y. Wang, Ranking websites, a probabilistic view, Internet Math. 3 (2007), 295–320.
  • Y. Bao, Z. M. Ma and Y. Shang, Some recent results on ranking webpages and websites, in Industrial and Applied Mathematics, series in comtemporary applied mathematics CAM 10, Higher Education Press, Beijing, 2009.
  • V. Barbu and N. Limnios, Semi-Markov chains and hidden semi-Markov models towards applications, Lecture Notes in Statist. 191, Springer, New York, 2008.
  • S. Brin and L. Page, The anatomy of a large-scale hypertextual Web search engine, Computer Networks and ISDN Systems 30 (1998), 107–117.
  • D. Cai, X. He, J. Wen and W. Ma, Block-level link analysis, In proceedings of SIGIR '2004, 440–447.
  • E. Çinlar, Markov renewal theory: A Survey, Management Science 21 (1975), 727–752.
  • Y. Deng and Z. Liang, Random point process and its application (in Chinese), Science Press, 1992.
  • G. Feng, T. Liu, Y. Wang, Y. Bao, Z. M. Ma, X. D. Zhang and W. Ma, AggregateRank: Bringing Order to Web Sites, In proceedings of SIGIR '2006, 75–82.
  • B. Gao, T. Liu, Y. Liu, T. Wang, H. Li and Z. M. Ma, Page importance computation based on Markov processes, Information Retrieval 14 (2011), 488–514.
  • B. Gao, T. Liu, Z. M. Ma, T. Wang and H. Li, A general Markov framework for page importance computation, In proceedings of CIKM '2009, 1835–1838.
  • G. H. Golub and C. F. V. Loan, Matrix computations (3rd ed.), Johns Hopkins University Press, 1996.
  • Z. Gyongyi, H. Garcia-Molina and J. Pedersen, Combating web spam with trustrank, In proceedings of VLDB '2004, 576–587.
  • Z. Hou, W. Liu, Z. Liu, G. Liu, J. Zhou, J. Li and C. Yuan, Markov skeleton processes, Hunan Science and Technology Press, 2000.
  • Z. Hou and G. Liu, Markov skeleton processes and their applications, Science Press and International Press, 2005.
  • J. Jacod, Calcul stochastigue et probléms de martingales, Lecture Notes in Mathematics 714, Springer, 1979.
  • J. Jacod, Multivariate point process: Predictable projection, Radon-Nikodym Derivative, Representation of Martingales, Probab. Theory Relat. Fields 31 (1975), 235–253.
  • A. Jindal, C. Crutchfield, S. Goel, R. Kolluri and R. Jain, The mobile web is structurally different, In proceedings of the 11th IEEE Global Internet Symposium' 2008.
  • A. Langville and C. Meyer, Deeper inside pagerank, Internet Math. 1 (2004), 335–400.
  • Y. Liu, B. Gao, T. Liu, Y. Zhang, Z. M. Ma, S. He and H. Li, BrowseRank: Letting users vote for page importance, In proceedings of SIGIR '2008, 451–458.
  • Y. Liu, Research on stochastic models and algorithms for web page ranking (in Chinese), Doctor degree thesis, 2009.
  • Y. Liu, T. Liu, B. Gao, Z. M. Ma and H. Li, A framework to compute page importance based on user behaviors, Information Retrieval 13 (2010), 22–45.
  • Y. Liu and Z. M. Ma, Comparison of two algorithms for computing page importance, AAIM2010, LNCS 6124 (2010), 1–11.
  • Y. Liu, Z. M. Ma and C. Zhou, Further study on web Markov skeleton processes (in preparation).
  • Z. M. Ma and L. Tang, Martingale method to minimum Q-process (in Chinese), Hunan Ann. Math. 3 (1983), 36–44.
  • U. N. Bhat, Elements of applied stochastic processes (2nd edition), John Wiley & Sons, Inc., 1984.
  • Z. Nie, Y. Zhang, J. Wen and W. Ma, Object-level ranking: Bringing order to web objects, In proceedings of WWW '2005, 567–574.
  • L. Page, S. Brin, R. Motwani and T. Winograd, The pagerank citation ranking: Bringing order to the web, Technical report, Stanford Digital Library Technologies Project, 1998.
  • S. He, J. Wang and J. Yan, Semimartingale theory and stochastic calculus (Science Press), Beijing CRC Press, Boca Raton, FL, 1992.