Tohoku Mathematical Journal

Stability of a stationary solution for the Lugiato-Lefever equation

Tomoyuki Miyaji, Isamu Ohnishi, and Yoshi Tsutsumi

Full-text: Open access

Abstract

We study the stability of a stationary solution for the Lugiato-Lefever equation with the periodic boundary condition in one space dimension, which is a damped and driven nonlinear Schrödinger equation introduced to model the optical cavity. In this paper, we prove the Strichartz estimates for the linear damped Schrödinger equation with potential and external forcing and investigate the stability of certain stationary solutions under the initial perturbation within the framework of $L^2$.

Article information

Source
Tohoku Math. J. (2), Volume 63, Number 4 (2011), 651-663.

Dates
First available in Project Euclid: 6 January 2012

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1325886285

Digital Object Identifier
doi:10.2748/tmj/1325886285

Mathematical Reviews number (MathSciNet)
MR2872960

Zentralblatt MATH identifier
1234.35251

Subjects
Primary: 35Q55: NLS-like equations (nonlinear Schrödinger) [See also 37K10]
Secondary: 35B35: Stability

Citation

Miyaji, Tomoyuki; Ohnishi, Isamu; Tsutsumi, Yoshi. Stability of a stationary solution for the Lugiato-Lefever equation. Tohoku Math. J. (2) 63 (2011), no. 4, 651--663. doi:10.2748/tmj/1325886285. https://projecteuclid.org/euclid.tmj/1325886285


Export citation

References

  • N. Akhmediev and A. Ankiewicz, Dissipative soliton, Lecture Notes in Phys. 661, Springer-Verlag, Berlin, Heidelberg, 2005.
  • N. Akhmediev and A. Ankiewicz, Dissipative solitons: From optics to biology and medicine, Lecture Notes in Phys. 751, Springer-Verlag, Berlin, Heidelberg, 2008.
  • T. Ackemann and W. J. Firth, Dissipative solitons in pattern-forming nonlinear optical systems, Lecture Notes in Phys. 661 (2005), 55–100.
  • B. Aulbach, Continuous and discrete dynamics near manifolds of equilibria, Lecture Notes in Math. 1058, Springer-Verlag, Berlin, 1984.
  • J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part I: Schrödinger equations, Geom. Funct. Anal. 3 (1993), 107–156.
  • V. S. Buslaev and G. S. Perel'man, Scattering for the nonlinear Schrödinger equation: states close to a soliton, St. Petersburg Math. J. 4 (1993), 1111–1142.
  • T. Cazenave, Semilinear Schrödinger equations, Courant Lect. Notes Math. 10, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2003.
  • M. Christ and A. Kiselev, Maximal functions associated to filtrations, J. Funct. Anal. 179 (2001), 409–425.
  • W. J. Firth, G. K. Harkness, A. Lord and J. M. McSloy, Dynamical properties of two-dimensional Kerr cavity solitons, J. Opt. Soc. Amer. B Opt. Phys. 19 (2002), 747–752.
  • J.-M. Ghidaglia, Finite-dimensional behavior for weakly damped driven nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 365–405.
  • D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math. 840, Springer-Verlag, Berlin-New York, 1981.
  • L. A. Lugiato and R. Lefever, Spatial dissipative structures in passive optical systems, Phys. Rev. Lett. 58 (1987), 2209–2211.
  • T. Miyaji, I. Ohnishi and Y. Tsutsumi, Bifurcation analysis to the Lugiato-Lefever equation in one space dimension, Phys. D 239 (2010), 2066–2083.
  • H. F. Smith and C. D. Sogge, Global Strichartz estimates for nontrapping perturbations of the Laplacian, Comm. Partial Differential Equations 25 (2000), 2171–2183.
  • A. Soffer and M. I. Weinstein, Multichannel nonlinear scattering for nonintegrable equations, Comm. Math. Phys. 133 (1990), 119–146.
  • X.-M. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors, Phys. D 88 (1995), 167–175.
  • A. Zygmund, On Fourier coefficients and transforms of functions of two variables, Studia Math. 50 (1974), 189–201.