Tohoku Mathematical Journal

Non existence of homogeneous contact metric manifolds of non positive curvature

Antonio Lotta

Full-text: Open access

Abstract

We prove that there exist no simply connected homogeneous contact metric manifolds having nonpositive sectional curvature.

Article information

Source
Tohoku Math. J. (2), Volume 62, Number 4 (2010), 575-578.

Dates
First available in Project Euclid: 4 January 2011

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1294170347

Digital Object Identifier
doi:10.2748/tmj/1294170347

Mathematical Reviews number (MathSciNet)
MR2768760

Zentralblatt MATH identifier
1208.53055

Subjects
Primary: 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.)
Secondary: 53D10: Contact manifolds, general 53C30: Homogeneous manifolds [See also 14M15, 14M17, 32M10, 57T15]

Keywords
Contact metric manifold homogeneous Riemannian space of nonpositive curvature

Citation

Lotta, Antonio. Non existence of homogeneous contact metric manifolds of non positive curvature. Tohoku Math. J. (2) 62 (2010), no. 4, 575--578. doi:10.2748/tmj/1294170347. https://projecteuclid.org/euclid.tmj/1294170347


Export citation

References

  • D. V. Alekseevskii, Homogeneous Riemannian spaces of negative curvature, Mat. Sb. 25 (1975), 87–109; English translation, Math. USSR-Sb. 96 (1975), 93–117.
  • R. Azencott and E. N. Wilson, Homogeneous manifolds with negative curvature. I, Trans. Amer. Math. Soc. 215 (1976), 323–362.
  • R. Azencott and E. N. Wilson, Homogeneous manifolds with negative curvature. II, Mem. Amer. Math. Soc. 8 (1976), iii+102pp.
  • D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progr. Math. 203, Birkhäuser, Boston, 2002.
  • D. E. Blair, Curvature of contact metric manifolds. Complex, contact and symmetric manifolds, 1–13, Progr. Math. 234, Birkhäuser, Boston, 2005.
  • D. E. Blair, On the non-existence of flat contact metric structures, Tohoku Math. J. (2) 28 (1976), 373–379.
  • A. Diatta, Riemannian geometry on contact Lie groups, Geom. Dedicata 133 (2008), 83–94.
  • Z. Olszak, On contact metric manifolds, Tohoku Math. J. (2) 31 (1979), 247–253.
  • D. Perrone, Homogeneous contact Riemannian three-manifolds, Illinois J. Math. 42 (1998), 243–256.
  • P. Rukimbira, A characterization of flat contact metric geometry, Houston J. Math. 24 (1998), 409–414.
  • S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure. I, Tohoku Math. J. (2) 12 (1960), 459–476.
  • A. Zeghib, Subsystems of Anosov systems, Amer. J. Math. 117 (1995), 1431–1448.
  • T. H. Wolter, Homogeneous manifolds with nonpositive curvature operator, Geom. Dedicata 37 (1991), 361–370.