Tohoku Mathematical Journal

A group-theoretic characterization of the direct product of a ball and punctured planes

Jisoo Byun, Akio Kodama, and Satoru Shimizu

Full-text: Open access

Abstract

Employing the same technique as in our previous papers, we establish an intrinsic characterization of the direct product of a complex Euclidean ball and punctured planes in the category of Stein manifolds from the viewpoint of holomorphic automorphism group.

Article information

Source
Tohoku Math. J. (2), Volume 62, Number 4 (2010), 485-507.

Dates
First available in Project Euclid: 4 January 2011

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1294170343

Digital Object Identifier
doi:10.2748/tmj/1294170343

Mathematical Reviews number (MathSciNet)
MR2768756

Zentralblatt MATH identifier
1211.32016

Subjects
Primary: 32M05: Complex Lie groups, automorphism groups acting on complex spaces [See also 22E10]
Secondary: 32Q28: Stein manifolds

Keywords
Holomorphic automorphism groups holomorphic equivalences

Citation

Byun, Jisoo; Kodama, Akio; Shimizu, Satoru. A group-theoretic characterization of the direct product of a ball and punctured planes. Tohoku Math. J. (2) 62 (2010), no. 4, 485--507. doi:10.2748/tmj/1294170343. https://projecteuclid.org/euclid.tmj/1294170343


Export citation

References

  • J. Byun, A. Kodama and S. Shimizu, A group-theoretic characterization of the direct product of a ball and a Euclidean space, Forum Math. 18 (2006), 983–1009.
  • A. V. Isaev, Erratum to: “Characterization of the unit ball in $\boldsymbolC^n$ among complex manifolds of dimension $n$”, J. Geom. Anal. 18 (2008), 919.
  • A. V. Isaev and N. G. Kruzhilin, Effective actions of the unitary group on complex manifolds, Canad. J. Math. 54 (2002), 1254–1279.
  • A. Kodama and S. Shimizu, A group-theoretic characterization of the space obtained by omitting the coordinate hyperplanes from the complex Euclidean space, Osaka J. Math. 41 (2004), 85–95.
  • A. Kodama and S. Shimizu, A group-theoretic characterization of the space obtained by omitting the coordinate hyperplanes from the complex Euclidean space, II, J. Math. Soc. Japan 58 (2006), 643–663.
  • A. Kodama and S. Shimizu, An intrinsic characterization of the unit polydisc, Michigan Math. J. 56 (2008), 173–181.
  • A. Kodama and S. Shimizu, Standardization of certain compact group actions and the automorphism group of the complex Euclidean space, Complex Var. Elliptic Equ. 53 (2008), 215–220.
  • T. Oikawa, A characterization of a certain class of two-dimensional complex unbounded domains (in Japanese), Master's Thesis, Tohoku University (2006).
  • S. Shimizu, Automorphisms and equivalence of bounded Reinhardt domains not containing the origin, Tohoku Math. J. 40 (1988), 119–152.