Tohoku Mathematical Journal

Carleson inequalities on parabolic Bergman spaces

Masaharu Nishio, Noriaki Suzuki, and Masahiro Yamada

Full-text: Open access

Abstract

We study Carleson inequalities on parabolic Bergman spaces on the upper half space of the Euclidean space. We say that a positive Borel measure satisfies a $(p,q)$-Carleson inequality if the Carleson inclusion mapping is bounded, that is, $q$-th order parabolic Bergman space is embedded in $p$-th order Lebesgue space with respect to the measure under considering. In a recent paper [6], we estimated the operator norm of the Carleson inclusion mapping for the case $q$ is greater than or equal to $p$. In this paper we deal with the opposite case. When $p$ is greater than $q$, then a measure satisfies a $(p,q)$-Carleson inequality if and only if its averaging function is $\sigma$-th integrable, where $\sigma$ is the exponent conjugate to $p/q$. An application to Toeplitz operators is also included.

Article information

Source
Tohoku Math. J. (2), Volume 62, Number 2 (2010), 269-286.

Dates
First available in Project Euclid: 23 June 2010

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1277298649

Digital Object Identifier
doi:10.2748/tmj/1277298649

Mathematical Reviews number (MathSciNet)
MR2663457

Zentralblatt MATH identifier
1204.35013

Subjects
Primary: 35K05: Heat equation
Secondary: 26D10: Inequalities involving derivatives and differential and integral operators 31B10: Integral representations, integral operators, integral equations methods

Keywords
Carleson measure Toeplitz operator parabolic operator of fractional order Bergman space

Citation

Nishio, Masaharu; Suzuki, Noriaki; Yamada, Masahiro. Carleson inequalities on parabolic Bergman spaces. Tohoku Math. J. (2) 62 (2010), no. 2, 269--286. doi:10.2748/tmj/1277298649. https://projecteuclid.org/euclid.tmj/1277298649


Export citation

References

  • B. R. Choe and H. Yi, Representations and interpolations of harmonic Bergman functions on half-spaces, Nagoya Math. J. 151 (1998), 51--89.
  • B. R. Choe, H. Koo and H. Yi, Positive Toeplitz operators between the harmonic Bergman spaces, Potential Anal. 17 (2002), 307--335.
  • D. Luecking, Multipliers of Bergman spaces into Lebesgue spaces, Proc. Edinburgh Math. Soc. (2) 29 (1986), 125--131.
  • M. Nishio, K. Shimomura and N. Suzuki, $\alpha$-parabolic Bergman spaces, Osaka J. Math. 42 (2005), 133--162.
  • M. Nishio K. Shimomura and N. Suzuki, $L^p$-boundedness of Bergman projections for $\alpha$-parabolic operators, Potential theory in Matsue, 305--318, Adv. Stud. Pure Math. 44, Math. Soc. Japan, Tokyo, 2006.
  • M. Nishio, N. Suzuki and M. Yamada, Toeplitz operators and Carleson measures on parabolic Bergman spaces, Hokkaido Math. J. 36 (2007), 563--583.
  • M. Nishio, N. Suzuki and M. Yamada, Compact Toeplitz operators on parabolic Bergman spaces, Hiroshima Math. J. 38 (2008), 177--192.
  • M. Nishio, N. Suzuki and M. Yamada, Interpolating sequences of parabolic Bergman spaces, Potential Anal. 28 (2008), 357--378.
  • M. Nishio, N. Suzuki and M. Yamada, Weighted Berezin transformations with application to Toeplitz operators of Schatten class on the parabolic Bergman spaces, Kodai Math. J. 32 (2009), 501--520.
  • M. Nishio and M. Yamada, Carleson type measures on parabolic Bergman spaces, J. Math. Soc. Japan 58 (2006), 83--96.
  • W. Ramey and H. Yi, Harmonic Bergman functions on half-spaces, Trans. Amer. Math. Soc. 348 (1996), 633--660.