Tohoku Mathematical Journal

Multiplicity of solutions for parametric $p$-Laplacian equations with nonlinearity concave near the origin

Shouchuan Hu and Nikolaos S. Papageorgiou

Full-text: Open access

Abstract

We consider a nonlinear elliptic problem driven by the $p$-Laplacian and depending on a parameter. The right-hand side nonlinearity is concave, (i.e., $p$-sublinear) near the origin. For such problems we prove two multiplicity results, one when the right-hand side nonlinearity is $p$-linear near infinity and the other when it is $p$-superlinear. Both results show that there exists an open bounded interval such that the problem has five nontrivial solutions (two positive, two negative and one nodal), if the parameter is in that interval. We also consider the case when the parameter is in the right end of the interval.

Article information

Source
Tohoku Math. J. (2), Volume 62, Number 1 (2010), 137-162.

Dates
First available in Project Euclid: 31 March 2010

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1270041030

Digital Object Identifier
doi:10.2748/tmj/1270041030

Mathematical Reviews number (MathSciNet)
MR2654306

Zentralblatt MATH identifier
1208.35050

Subjects
Primary: 35J20: Variational methods for second-order elliptic equations
Secondary: 35J60: Nonlinear elliptic equations 38J70

Keywords
$p$-Laplacian $p$-linear perturbation $p$-superlinear perturbation constant sign solutions nodal solutions multiple solutions upper and lower solutions

Citation

Hu, Shouchuan; Papageorgiou, Nikolaos S. Multiplicity of solutions for parametric $p$-Laplacian equations with nonlinearity concave near the origin. Tohoku Math. J. (2) 62 (2010), no. 1, 137--162. doi:10.2748/tmj/1270041030. https://projecteuclid.org/euclid.tmj/1270041030


Export citation

References

  • S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math. Soc. 196 (2008).
  • A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519--543.
  • A. Ambrosetti, J. Garcia-Azorero and I. Peral Alonso, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. 137 (1996), 219--242.
  • A. Anane, Simplicité et isolation de la première valeur propre du $p$-Lapalcien avec poids, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 725--728.
  • T. Bartsch and Z. Liu, On a superlinear elliptic $p$-Laplacian equation, J. Differential Equations 198 (2004), 149--175.
  • L. Boccardo, M. Escobedo and I. Peral, A Dirichlet problem involving critical exponents, Nonlinear Anal. 24 (1995), 1639--1648.
  • H. Brezis and L. Nirenberg, $H^1$ versus $C^1$-local minimizers, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 465--472.
  • S. Carl and K. Perera, Sign-changing and multiple solutions for the $p$-Laplacian, Abstr. Appl. Anal. 7 (2002), 613--626.
  • F. O. de Paiva and E. Massa, Multiple solutions for some elliptic equations with a nonlinearity concave at the origin, Nonlinear Anal. 66 (2007), 2940--2946.
  • F. O. de Paiva, Multiple solutions for a class of quasilinear problems, Discrete Contin. Dyn. Syst., 15 (2006), 660--680.
  • N. Dunford and J. Schwartz, Linear operators I, Wiley, Interscience Publishers, Inc., New York, 1958.
  • M. Filippakis and N. S. Papageorgiou, Solvability of nonlinear variational-hemivariational inequalities, J. Math. Anal. Appl. 311 (2005), 162--181.
  • J. Garcia Azorero, J. Manfredi and I. Peral Alonsos, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math. 2 (2000), 385--404.
  • L. Gasinski and N. S. Papageorgiou, Nonlinear analysis, Chapman & Hall/CRC, Boca Raton, FL, 2006.
  • M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. 13 (1989), 879--902.
  • Z. Guo and Z. Zhang, $W^1,p$ versus $C^1$ local minimizers and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl. 286 (2003), 32--50.
  • A. Lê, Eigenvalue problems for the $p$-Laplacian, Nonlinear Anal. 64 (2006), 1057--1099.
  • M. Marcus and V. Mizel, Absolute continuity on tracks and mappings of Sobolev spaces, Arch. Rational Mech. Anal. 45 (1972), 294--320.
  • M. Otani, Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations, J. Funct. Anal. 76 (1988), 140--159.
  • K. Perera, Multiplicity results for some elliptic problems with concave nonlinearities, J. Differential Equations 140 (1997), 133--141.
  • M. Struwe, Variational methods, Applications to nonlinear partial differential equations and Hamiltonian systems, 3rd. ed., Springer, Berlin, 2000.
  • J. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191--202.
  • Z. Zhang, J. Chen and S. Li, Construction of pseudogradient vector field and sign-changing multiple solutions involving $p$-Laplacian, J. Differential Equations 201 (2004), 287--303.
  • Z. Zhang and S. Li, On sign-changing and multiple solutions of the $p$-Laplacian, J. Funct. Anal. 197 (2003), 447--468.