Tohoku Mathematical Journal

The characterization of Riemannian metric arising from phase transition problems

Mao-Sheng Chang, Shu-Cheng Lee, and Chien-Chang Yen

Full-text: Open access

Abstract

We present one property of the Riemannian metric which is derived from the positive power of potential functions. Then this property is applied to the study of the $\Gamma$-convergence of energy functionals which are associated with the Euler-Lagrange $p$-Laplacian equation.

Article information

Source
Tohoku Math. J. (2), Volume 61, Number 3 (2009), 333-347.

Dates
First available in Project Euclid: 16 October 2009

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1255700198

Digital Object Identifier
doi:10.2748/tmj/1255700198

Mathematical Reviews number (MathSciNet)
MR2568258

Zentralblatt MATH identifier
1188.49015

Subjects
Primary: 49J45: Methods involving semicontinuity and convergence; relaxation

Keywords
Riemannian metric $\Gamma$-convergence functions of bounded variations

Citation

Chang, Mao-Sheng; Lee, Shu-Cheng; Yen, Chien-Chang. The characterization of Riemannian metric arising from phase transition problems. Tohoku Math. J. (2) 61 (2009), no. 3, 333--347. doi:10.2748/tmj/1255700198. https://projecteuclid.org/euclid.tmj/1255700198


Export citation

References

  • L. Ambrosio, Metric space valued functions of bounded variation, Ann. Sc. Norm. Super. Pisa Cl. Sci. 17 (1990), 439--478.
  • L. Ambrosio, C. De Lellis and C. Mantegazza, Line energies for gradient vector fields in the plane, Calc. Var. Partial Differential Equations 9 (1999), 327--355.
  • P. Aviles and Y. Giga, On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields, Proc. Roy. Soc. Endiburgh Sect. A 129 (1999), 1--17.
  • S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hiliard fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 67--90.
  • A. C. Barroso and I. Fonseca, Anisotropic singular perturbations---the vectorial case, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), 527--571.
  • G. Bouchitté, Singular perturbations of variational problems arising from a two-phase transition model, Appl. Math. Optim. 21 (1990), 289--314.
  • A. Braides, $\Gamma$-convergence for beginners, Oxford Lecture Ser. Math. Appl. 22, Oxford University Press, Oxford, 2002.
  • M. S. Chang, S. C. Lee and C. C. Yen, Minimizers and $\Gamma$-convergence of energy functionals derived from $p$-Laplacian equation, to appear in Taiwanese Journal of Mathematics, 2009.
  • S. Conti, I. Fonseca and G. Leoni, A $\Gamma$-convergence result for the two-gradient theory of phase transitions, Comm. Pure Appl. Math. 55 (2002), 857--936.
  • G. Dal Maso, An introduction to $\Gamma$-convergence, Birkhäuser Boston Inc., Boston, MA, 1993.
  • A. DeSimone, R. V. Kohn, S. Müller and F. Otto, A compactness result in the gradient theory of phase transitions, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 833--844.
  • L. C. Evans, Partial differential equations, American Mathematical Society, Providence, 1998.
  • L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, CRC Press, Boca Raton, FL, 1992.
  • I. Fonseca, Phase transitions of elastic solid materials, Arch. Ration. Mech. Anal. 107 (1989), 195--223.
  • I. Fonseca and C. Mantegazza, Second order singular perturbation models for phase transitions, SIAM J. Math. Anal. 31 (2000), 1121--1143.
  • I. Fonseca and L. Tartar, The gradient theory of phase transitions for systems with two potential wells, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 89--102.
  • P. Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964.
  • W. Jin and R. V. Kohn, Singular perturbation and the energy of folds, J. Nonlinear Sci. 10 (2000), 355--390.
  • R. V. Kohn and P. Sternberg, Local minimizers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 69--84.
  • F. H. Lin and X. P. Yang, Geometric measure theory---an introduction, Science Press, Beijing, International Press, Boston, MA, 2002.
  • L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal. 98 (1987), 123--142.
  • L. Modica and S. Mortola, Un esempio di $\Gamma$-convergenza, Boll. Un. Mat. Ital. B (5) 14 (1977), 285--299.
  • J. R. Munkres, Analysis on manifolds, Addision-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1991.
  • P. Sternberg, The effect of a singular perturbation on non-convex variatoinal problems, Arch. Ration. Mech. Anal. 101 (1988), 209--260.