Tohoku Mathematical Journal

The characterization of Riemannian metric arising from phase transition problems

Mao-Sheng Chang, Shu-Cheng Lee, and Chien-Chang Yen

Full-text: Open access


We present one property of the Riemannian metric which is derived from the positive power of potential functions. Then this property is applied to the study of the $\Gamma$-convergence of energy functionals which are associated with the Euler-Lagrange $p$-Laplacian equation.

Article information

Tohoku Math. J. (2), Volume 61, Number 3 (2009), 333-347.

First available in Project Euclid: 16 October 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 49J45: Methods involving semicontinuity and convergence; relaxation

Riemannian metric $\Gamma$-convergence functions of bounded variations


Chang, Mao-Sheng; Lee, Shu-Cheng; Yen, Chien-Chang. The characterization of Riemannian metric arising from phase transition problems. Tohoku Math. J. (2) 61 (2009), no. 3, 333--347. doi:10.2748/tmj/1255700198.

Export citation


  • L. Ambrosio, Metric space valued functions of bounded variation, Ann. Sc. Norm. Super. Pisa Cl. Sci. 17 (1990), 439--478.
  • L. Ambrosio, C. De Lellis and C. Mantegazza, Line energies for gradient vector fields in the plane, Calc. Var. Partial Differential Equations 9 (1999), 327--355.
  • P. Aviles and Y. Giga, On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields, Proc. Roy. Soc. Endiburgh Sect. A 129 (1999), 1--17.
  • S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hiliard fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 67--90.
  • A. C. Barroso and I. Fonseca, Anisotropic singular perturbations---the vectorial case, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), 527--571.
  • G. Bouchitté, Singular perturbations of variational problems arising from a two-phase transition model, Appl. Math. Optim. 21 (1990), 289--314.
  • A. Braides, $\Gamma$-convergence for beginners, Oxford Lecture Ser. Math. Appl. 22, Oxford University Press, Oxford, 2002.
  • M. S. Chang, S. C. Lee and C. C. Yen, Minimizers and $\Gamma$-convergence of energy functionals derived from $p$-Laplacian equation, to appear in Taiwanese Journal of Mathematics, 2009.
  • S. Conti, I. Fonseca and G. Leoni, A $\Gamma$-convergence result for the two-gradient theory of phase transitions, Comm. Pure Appl. Math. 55 (2002), 857--936.
  • G. Dal Maso, An introduction to $\Gamma$-convergence, Birkhäuser Boston Inc., Boston, MA, 1993.
  • A. DeSimone, R. V. Kohn, S. Müller and F. Otto, A compactness result in the gradient theory of phase transitions, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 833--844.
  • L. C. Evans, Partial differential equations, American Mathematical Society, Providence, 1998.
  • L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, CRC Press, Boca Raton, FL, 1992.
  • I. Fonseca, Phase transitions of elastic solid materials, Arch. Ration. Mech. Anal. 107 (1989), 195--223.
  • I. Fonseca and C. Mantegazza, Second order singular perturbation models for phase transitions, SIAM J. Math. Anal. 31 (2000), 1121--1143.
  • I. Fonseca and L. Tartar, The gradient theory of phase transitions for systems with two potential wells, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 89--102.
  • P. Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964.
  • W. Jin and R. V. Kohn, Singular perturbation and the energy of folds, J. Nonlinear Sci. 10 (2000), 355--390.
  • R. V. Kohn and P. Sternberg, Local minimizers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 69--84.
  • F. H. Lin and X. P. Yang, Geometric measure theory---an introduction, Science Press, Beijing, International Press, Boston, MA, 2002.
  • L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal. 98 (1987), 123--142.
  • L. Modica and S. Mortola, Un esempio di $\Gamma$-convergenza, Boll. Un. Mat. Ital. B (5) 14 (1977), 285--299.
  • J. R. Munkres, Analysis on manifolds, Addision-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1991.
  • P. Sternberg, The effect of a singular perturbation on non-convex variatoinal problems, Arch. Ration. Mech. Anal. 101 (1988), 209--260.