Tohoku Mathematical Journal

Certain Rankin-Selberg integral for unitary groups

Masao Tsuzuki

Full-text: Open access


We consider the real rank one unitary group $G$ and its subgroup $H$ obtained as the stabilizer of an anisotropic vector in the skew-hermitian space defining $G$. We compute the inner-product of an Eisenstein series on $H$ and a non-holomorphic cuspidal Hecke eigenform on $G$ restricted to $H$ to obtain an integral representation of the standard $L$-function of the eigenform. We also discuss some consequences of the integral representation.

Article information

Tohoku Math. J. (2), Volume 61, Number 1 (2009), 115-164.

First available in Project Euclid: 3 April 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11F67: Special values of automorphic $L$-series, periods of modular forms, cohomology, modular symbols
Secondary: 11F55: Other groups and their modular and automorphic forms (several variables)


Tsuzuki, Masao. Certain Rankin-Selberg integral for unitary groups. Tohoku Math. J. (2) 61 (2009), no. 1, 115--164. doi:10.2748/tmj/1238764549.

Export citation


  • S. Gelbart and I. I. Piatetski-Shapiro, Automorphic forms and $L$-functions for the unitary groups, Lie group representations II, (College Park, Md., 1982/1983), 141--184, Lecture Note in Math. 1041, Springer Berlin, 1984.
  • I. S. Gradshteyn and I. M. Ryzhik, Tables of integrals, series and products (sixth edition), Academic Press, Inc., San Diego, CA, 2000.
  • T. Hina and T. Sugano, On the local Hecke series of some classical groups over $\frak p$-adic fields, J. Math. Soc. Japan 35 (1983), 133--152.
  • S. S. Kudla and J. Milson, The theta correspondence and harmonic forms I, Math. Ann. 274 (1986), 353--378.
  • S. S. Kudla and J. Milson, The theta correspondence and harmonic forms II, Math. Ann. 277 (1987), 267--314.
  • R. A. Langlands, Functional equations satisfied by Eisenstein series, Lecture Notes in Math. 544, Springer-Verlag, 1976.
  • A. Murase and T. Sugano, Shintani function and its application to automorphic $L$-functions for classical groups I. The case of orthogonal groups, Math. Ann. 299 (1994), 17--56.
  • A. Murase and T. Sugano, Automorphic $L$-functions for unitary groups (in Japanese), based on the lecture given at the University of Tokyo by T. Sugano, 1995.
  • A. Murase and T. Sugano, On standard $L$-functions attached to automorphic forms on definite orthogonal groups, Nagoya Math. J. 152 (1998), 57--96.
  • C. Moeglin and J-L. Waldspurger, Décomposition spectrale et séries d'Eisenstein, Progr. Math. 113, Birkhäuser Verlag, Basel, 1994.
  • T. Oda and M. Tsuzuki, Automorphic Green functions associated with the secondary spherical functions, Publ. Res. Inst. Math. Sci. 39 (2003), 451--533.
  • I. Satake, Theory of spherical functions on reductive algebraic groups over $p$-adic fields, Inst. Hautes Études Sci. Math. 18 (1963), 5--69.
  • G. Shimura, Arithmetic of unitary groups, Ann. of Math. (2) 79 (1964), 369--409.
  • T. Sugano, On Dirichlet series attached to holomorphic cusp forms on $SO(2,q)$, Adv. Stud. Pure Math. 7 (1985), 333--362.
  • T. Sugano, Jacobi forms and the theta lifting, Comment. Math. Univ. St. Paul. 44 (1995), 1--58.
  • K. Taniguchi, Discrete series Whittaker functions of $SU(n,1)$ and $Spin(2n,1)$, J. Math. Sci. Univ. Tokyo 3 (1996), 331--377.
  • Y. L. Tong and S. P. Wang, Harmonic forms dual to geodesic cycles in quotients of $SU(p,q)$, Math. Ann. 258 (1982), 298--318.
  • Y. L. Tong and S. P. Wang, Period integrals in non-compact quotients of $SU(p,1)$, Duke Math. J. 52 (1985), 649--688.
  • M. Tsuzuki, Real Shintani functions on $U(n,1)$, J. Math. Sci. Univ. Tokyo 8 (2001), 609--688.
  • M. Tsuzuki, Real Shintani functions on $U(n,1)$ II, Computation of zeta integrals, J. Math. Sci. Univ. Tokyo 8 (2001), 689--719.
  • M. Tsuzuki, Fourier coefficients of automorphic Green functions on unitary groups and Kloosterman-sum-zeta-functions, preprint (2005).
  • D. Vogan and G. Zuckerman, Unitary representations with nonzero cohomology, Compositio Math. 53 (1984), 51--90.