Tohoku Mathematical Journal

Mixed Hodge structures on log smooth degenerations

Taro Fujisawa

Full-text: Open access


We introduce the notion of a log smooth degeneration, which is a logarithmic analogue of the central fiber of some kind of degenerations of complex manifolds over polydiscs. Under suitable conditions, we construct a natural cohomological mixed Hodge complex on the reduction of a compact log smooth degeneration. In particular, we obtain mixed Hodge structures on the log de Rham cohomologies and $E_1$-degeneration of the log Hodge to de Rham spectral sequence for a certain kind of compact reduced log smooth degenerations.

Article information

Tohoku Math. J. (2), Volume 60, Number 1 (2008), 71-100.

First available in Project Euclid: 28 March 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14C30: Transcendental methods, Hodge theory [See also 14D07, 32G20, 32J25, 32S35], Hodge conjecture
Secondary: 14D07: Variation of Hodge structures [See also 32G20] 32G20: Period matrices, variation of Hodge structure; degenerations [See also 14D05, 14D07, 14K30] 32S35: Mixed Hodge theory of singular varieties [See also 14C30, 14D07]


Fujisawa, Taro. Mixed Hodge structures on log smooth degenerations. Tohoku Math. J. (2) 60 (2008), no. 1, 71--100. doi:10.2748/tmj/1206734407.

Export citation


  • P. Deligne, Théorie de Hodge II, Publ. Math. Inst. Hautes Études Sci. 40 (1971), 5--58.
  • P. Deligne, Théorie de Hodge III, Publ. Math. Inst. Hautes Études Sci. 44 (1974), 5--77.
  • F. El Zein, Théorie de Hodge des cycles évanscents, Ann. Sci. École Norm. Sup. (4) 19 (1986), 107--184.
  • F. El Zein, Introduction à la théorie de Hodge mixte, Hermann, 1991.
  • T. Fujisawa, Limits of Hodge structures in several variables, Compos. Math. 115 (1999), 129--183.
  • T.Fujisawa, Degeneration of weight spectral sequences, Manuscripta Math. 108 (2002), 91--121.
  • T. Fujisawa and C. Nakayama, Mixed Hodge structures on log deformations, Rend. Sem. Mat. Univ. Padova 110 (2003), 221--268.
  • L. Illusie, Complexe cotangent et déformations I, Lecture Notes in Math. 239, Springer-Verlag, 1971.
  • L. Illusie, K. Kato and C. Nakayama, Quasi-unipotent logarithmic Riemann-Hilbert correspondences, J. Math. Sci. Univ. Tokyo 12 (2005), 1--66.
  • K. Kato, Logarithmic structures of Fontaine-Illusie, Algebraic Analysis, Geometry and Number Theory (J.-I. Igusa, ed.), 191--224, Johns Hopkins Univ., 1988.
  • K. Kato, T. Matsubara and C. Nakayama, Log $C^\infty$-functions and degenerations of Hodge structures, Algebraic Geometry 2000, Azumino, Adv. Stud. Pure Math. 36 (2002), 269--320.
  • K. Kato and C. Nakayama, Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over $\boldsymbolC$, Kodai Math. J. 22 (1999), 191--224.
  • L. Kaup and B. Kaup, Holomorphic functions of several variables, de Gruyter Stud. Math. 3, Walter de Gruyter, 1983.
  • Y. Kawamata, On algebraic fiber spaces, Contemporary trends in algebraic geometry and algebraic topology (S.-S. Chern, L. Fu and R. Hain, eds.), Nankai Tracts Math. 5, World Scientific Publishing, 2002.
  • Y. Kawamata and Y. Namikawa, Logarithmic deformations of normal crossing varieties and smoothing of degenerate Calabi-Yau varieties, Invent. Math. 118 (1994), 395--409.
  • H. Matsumura, Commutative ring theory, Cambridge Stud. Adv. Math. 8, Cambridge Univ. Press, 1986.
  • J. Steenbrink, Limits of Hodge structures, Invent. Math. 31 (1976), 229--257.
  • J. Steenbrink, Mixed Hodge structure on the vanishing cohomology, Real and complex singularities. Oslo 1976 (Alphen a/d Rijn), 525--563, Sijthoff-Noordhoff, 1977.
  • J. Steenbrink, Logarithmic embeddings of varieties with normal crossings and mixed Hodge structures, Math. Ann. 301 (1995), 105--118.