Tohoku Mathematical Journal

S{RH}-decompositions of codimension-one foliations and the Godbillon-Vey classes

Toshiyuki Nishimori

Full-text: Open access

Article information

Source
Tohoku Math. J. (2), Volume 32, Number 1 (1980), 9-34.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178229679

Digital Object Identifier
doi:10.2748/tmj/1178229679

Mathematical Reviews number (MathSciNet)
MR0567828

Zentralblatt MATH identifier
0413.57020

Subjects
Primary: 57R30: Foliations; geometric theory

Citation

Nishimori, Toshiyuki. S{RH}-decompositions of codimension-one foliations and the Godbillon-Vey classes. Tohoku Math. J. (2) 32 (1980), no. 1, 9--34. doi:10.2748/tmj/1178229679. https://projecteuclid.org/euclid.tmj/1178229679


Export citation

References

  • [1] C. GODBILLON AND J. VET, Un invariant des feuilletages de codimension 1, C. R. Acad. Sci. Paris 273 (1971), 92-95.
  • [2] A. HAEFLIGER, Varietes feuilletees, Ann. Scuola Norm. Sup. Pisa 16 (1964), 367-397
  • [3] M. HERMAN, The Godbillon-Vey invariant of foliations by planes of T3, Geometry an Topology, Rio de Janeiro 1976, Lecture Notes in Math. 597, Springer-Verlag, Berlin, 1977.
  • [4] H. LAWSON, Foliations, Bull. Amer. Math. Soc. 80 (1974), 369-418
  • [5] J. MILNOR, Characteristic classes, Ann. of Math. Studies No. 76, Princeton, 1974
  • [6] S. MORITA AND T. TSUBOI, The Godbillon-Veyclass of codimension-one foliations withou holonomy, to appear.
  • [7] H. NAKATSUKA, On representationsof homology classes, Proc. Japan Acad. 48 (1972), 360-364.
  • [8] T. NISHIMORI, Isolated ends of open leaves of codimension-onefoliations, Quart. J. Math Oxford 26 (1975), 159-167.
  • [9] T. NISHIMORI, Compact leaves with abelian holonomy, Thoku Math. J. 27 (1975), 259 272.
  • [10] T. NISHIMORI, Behaviour of leaves of codimension-one foliations, Thoku Math. J. 2 (1977), 255-273.
  • [11] T. NISHIMORI, Ends of leaves of codimension-one foliations, Thoku Math. J. 31 (1979), 1-22.
  • [12] G. REEB, Sur certain proprietes topologiques des varietes feuilletees, Actualite Sci Indust. 1183, Hermann, Paris, 1952.
  • [13] R. THOM, Quelques proprietes globales des varietes differentiates, Comm. Math. Helv 28 (1954), 17-86.
  • [14] W. THURSTON, Non-cobordant foliations of S3, Bull. Amer. Math. Soc. 78 (1972), 511-514