Tohoku Mathematical Journal

$K$-energy maps integrating Futaki invariants

Toshiki Mabuchi

Full-text: Open access

Article information

Source
Tohoku Math. J. (2), Volume 38, Number 4 (1986), 575-593.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178228410

Digital Object Identifier
doi:10.2748/tmj/1178228410

Mathematical Reviews number (MathSciNet)
MR0867064

Zentralblatt MATH identifier
0619.53040

Subjects
Primary: 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.)
Secondary: 58E11: Critical metrics

Citation

Mabuchi, Toshiki. $K$-energy maps integrating Futaki invariants. Tohoku Math. J. (2) 38 (1986), no. 4, 575--593. doi:10.2748/tmj/1178228410. https://projecteuclid.org/euclid.tmj/1178228410


Export citation

References

  • [1] S. BANDO AND T. MABUCHI, Uniqueness of Einstein Kahler metrics modulo connected group actions, submitted to Algebraic Geometry, Sendai, 1985, Advanced Studies in Pure Math., Kinokuniya, Tokyo and North-Holland, Amsterdam, New York, Oxford.
  • [2] S. K. DONALDSON, Anti-self-dual Yang-Mills connections over complex algebraic surface and stable vector bundles, Proc. London Math. Soc. 50 (1985), 1-26.
  • [3] A. FUTAKI, An obstruction to the existence of Einstein Kahler metrics, Invent. Math 73 (1983), 437-443.
  • [4] A. FUTAKI, On compact Kahler manifolds of constant scalar curvatures, Proc. Japa Acad. 59 Ser. A (1983), 401-402.
  • [5] S. KOBAYASHI, Curvature and stability of vector bundles, Proc. Japan Acad. 58 Ser. (1982), 158-162.
  • [6] T. MABUCHI, A functional integrating Futaki's invariant, Proc. Japan Acad. 61 Ser. (1985), 119-120.
  • [7] T. MABUCHI, Some symplectic geometry on compact Kahler manifolds (I), submitted t Osaka J. of Math.
  • [8] S. T. YAU, On the Ricci curvature of a compact Kahler manifold and the comple Monge-Ampere equation (I), Comm. Pure Appl. Math. 31 (1978), 339-411.