Tohoku Mathematical Journal

Curvature homogeneous hypersurfaces immersed in a real space form

Kazumi Tsukada

Full-text: Open access

Article information

Source
Tohoku Math. J. (2), Volume 40, Number 2 (1988), 221-244.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178228028

Digital Object Identifier
doi:10.2748/tmj/1178228028

Mathematical Reviews number (MathSciNet)
MR0943821

Zentralblatt MATH identifier
0651.53037

Subjects
Primary: 53C40: Global submanifolds [See also 53B25]
Secondary: 53C30: Homogeneous manifolds [See also 14M15, 14M17, 32M10, 57T15]

Citation

Tsukada, Kazumi. Curvature homogeneous hypersurfaces immersed in a real space form. Tohoku Math. J. (2) 40 (1988), no. 2, 221--244. doi:10.2748/tmj/1178228028. https://projecteuclid.org/euclid.tmj/1178228028


Export citation

References

  • [1] M. DAJCZER AND D. GROMOLL, Gauss parametrizations and rigidity aspects of submani-folds, J. Differential Geometry 22 (1985), 1-12.
  • [2] D. FERUS, Totally geodesic foliations, Math. Ann. 188 (1970), 313-316
  • [3] D. FERUS, H. KARCHER AND H. F. MUNZNER, Cliffordalgebren und neue isoparametrisch Hyperflachen, Math. Z. 177 (1981), 479-502.
  • [4] S. KOBAYASHI AND K. NOMIZU, Foundations of Differential Geometry, Vol. 2, Interscience, New York, London, Sydney, 1969.
  • [5] J. D. MOORE, Isometric immersions of Riemannian products, J. Differential Geometry (1971), 159-168.
  • [6] T. NAGANO AND T. TAKAHASHI, Homogeneous hypersurfaces in Euclidean spaces, J. Math Soc.Japan 12 (1960), 1-7.
  • [7] H. NAKAGAWA, Riemannian geometry in the large (in Japanese), Kaigai Publicatio L. T. D. 1977.
  • [8] H. OZEKI AND M. TAKEUCHI, On some types of isoparametric hypersurfaces in spheres, I, II, Thoku Math. J. 27 (1975), 515-559; ibid. 28 (1976), 7-55.
  • [9] P. J. RYAN, Homogeneity and some curvature conditions for hypersurfaces, Thok Math. J. 21 (1969), 363-388.
  • [10] K. SEKIGAWA, On some 3-dimensional Riemannian manifolds, Hokkaido Math. J. 2 (1973), 259-270.
  • [11] I. M. SINGER, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697.
  • [12] Z. I. SZABO, Structure theorems on Riemannian spaces satisfying R(X, Y)-R = 0, I, th local version, J. Differential Geometry 17 (1982), 531-582; II, global versions, Geo-metriae Dedicata 19 (1985), 65-108.
  • [13] H. TAKAGI, On curvature homogeneity of Riemannian manifolds, Thoku Math. J. 2 (1974), 581-585.
  • [14] T. TAKAHASHI, Homogeneous hypersurf aces in spaces of constant curvature, J. Math Soc. Japan 22 (1970), 395-410.
  • [15] T. TAKAHASHI, An isometric immersion of a homogeneous Riemannian manifold of di mension 3 in the hyperbolic space, J. Math. Soc. Japan 23 (1971), 649-661.