Tohoku Mathematical Journal

Classical Schottky groups of real type of genus two, II

Hiroki Sato

Full-text: Open access

Article information

Source
Tohoku Math. J. (2), Volume 43, Number 4 (1991), 449-472.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178227422

Digital Object Identifier
doi:10.2748/tmj/1178227422

Mathematical Reviews number (MathSciNet)
MR1133862

Zentralblatt MATH identifier
0799.30036

Subjects
Primary: 32G15: Moduli of Riemann surfaces, Teichmüller theory [See also 14H15, 30Fxx]
Secondary: 14H15: Families, moduli (analytic) [See also 30F10, 32G15] 30F10: Compact Riemann surfaces and uniformization [See also 14H15, 32G15] 30F40: Kleinian groups [See also 20H10]

Citation

Sato, Hiroki. Classical Schottky groups of real type of genus two, II. Tohoku Math. J. (2) 43 (1991), no. 4, 449--472. doi:10.2748/tmj/1178227422. https://projecteuclid.org/euclid.tmj/1178227422


Export citation

References

  • [1] L BERS, Automorphic forms for Schottky groups, Adv in Math 16 (1975), 332-361
  • [2] A I BOBENKO, Uniformization andfinite-gapintegration, Preprint Leningrad LOMI P-10-86 (1986), 1-41 (in Russian)
  • [3] A I BOBENKOANDL A BORDAG, Periodic multiphasesolutions of the Kadomsev-Petviashvili equation, J Phys A: Math Gen 22 (1989), 1259-1274
  • [4] R BROOKS, On the deformation theory ofclassical Schottky groups, Duke Math J. 52(1985), 1009-102
  • [5] V CHUCKROW, On Schottky groups with applications to Kleinian groups, Ann of Math. 88 (1969), 47-61
  • [6] J OILMAN, A geometric approach to the hyperbolic J0rgensen's inequality, Bull Amer Math So 16 (1987), 91-92
  • [7] J OILMAN, Inequalities in discrete subgroups of PSL(2, R), Can J Math 40 (1988), 115-13
  • [8] J OILMAN, On the existence of ellipticsin subgroups of PSL(2, R):A graphical picture, in Holomorphi Functions and Moduli II (D Drasin, ed), Springer-Verlag, New York, 1988, 23-27.
  • [9] T J0RGENSEN, On discrete groups of Mbius transformations, Amer J Math 98 (1976), 739-74
  • [10] T JRGENSEN, A MARDEN AND B. MASKIT, The boundary of classical Schottky space, Duke Mat J 46 (1979), 441-446
  • [11] L KEEN, On fundamental domains and the Teichmuller modular group, in Contributions to Analysi (L. V Ahlfors, ed.), Academic Press, New York, London, 1974, 185-194
  • [12] L KEEN, A modular group and Riemann surfaces of genus 2, Math. Z. 142 (1975), 205-21
  • [13] W MAGNUS, A KARRAS AND D. SOLITAR, Combinatorial Group Theory, Interscience, New York, London, 1966
  • [14] A MARDEN, Schottky groups and circles, in Contributions to Analysis (L V. Ahlfors, ed), Academi Press, New York, London, 1974, 273-278.
  • [15] G J MARTIN, On discrete Mbius groups in all dimensions: A generalization of J0rgensen's inequality, Acta Math 163 (1989), 253-289
  • [16] B. MASKIT, Some special 2-generator Kleinian groups, Proc Amer Math. Sco 106 (1989), 175-18
  • [17] J P MATELSKI, The classification of discrete 2-generator subgroups of PSL(2, R), Israel J 42 (1982), 472H SATO 309-317.
  • [18] B H NEUMANN, Die Automorphismengruppe der freien Gruppen, Math Ann 107 (1932), 367-38
  • [19] J NIELSEN, Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden, Math Ann. 78 (1918), 385-397
  • [20] P S. PHILLIPS AND R. SARNAK, The Laplasian for domains in hyperbolic spaces and limit sets o Kleinian groups, Acta Math 155 (1985), 173-241
  • [21] N PURZITSKY, Real two-dimensional representation of two-generator free groups, Math Z. 127 (1972), 95-104.
  • [22] R RODRIGUEZ, On Schottky-type groups with applications to Riemann surfaces with nodes, I, Comple Variables 1 (1983), 279-291.
  • [23] R RODRIGUEZ, On Schottky-type groups with applications to Riemann surfaces with nodes, II, Comple Variables 1 (1983), 293-310
  • [24] G. ROSENBERGER, All generating pairs of all two-generator Fuchsian groups, Arch Math. 46 (1986), 198-204
  • [25] H SATO, On augmented Schottky spaces and automorphic forms, I, Nagoya Math J 75(1979), 151-17
  • [26] H. SATO, Introduction of new coordinates to the Schottky space–The general case–, J Math So Japan 35 (1983), 23-35.
  • [27] H SATO, Augmented Schottky spaces and a uniformization of Riemann surfaces, Thoku Math 35 (1983), 557-572.
  • [28] H SATO, Classical Schottky groups of real type of genus two, I, Thoku Math J. 40 (1988), 51–7
  • [29] H SATO, On a paper of Zarrow, Duke Math J. 56 (1988), 205-20
  • [30] H SATO, Discreteness of real two-generator free groups, in Analytic Function Theory of One Comple Variable (Y Komatsu, ed), Longman Scientific and Technical, Harlow, 1989, 263-286
  • [31] R ZARROW, Classical and non-classical Schottky groups, Duke Math J 42 (1975), 717-72

See also

  • Part I: Hiroki Sato. Classical Schottky groups of real type of genus two, I. Tohoku Math. J., Volume 40, Number 1 (1988), pp. 51-75.
  • Part III: Hiroki Sato. Classical Schottky groups of real type of genus two, III. Tohoku Math. J., Volume 49, Number 4 (1997), pp. 485-502.