Tohoku Mathematical Journal

Number of zeros of solutions to singular initial value problems

Yoshitsugu Kabeya, Eiji Yanagida, and Shoji Yotsutani

Full-text: Open access

Article information

Source
Tohoku Math. J. (2), Volume 50, Number 1 (1998), 1-22.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1178225013

Digital Object Identifier
doi:10.2748/tmj/1178225013

Mathematical Reviews number (MathSciNet)
MR1604620

Zentralblatt MATH identifier
0910.35047

Subjects
Primary: 34A12: Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions
Secondary: 34C10: Oscillation theory, zeros, disconjugacy and comparison theory 35J99: None of the above, but in this section

Citation

Kabeya, Yoshitsugu; Yanagida, Eiji; Yotsutani, Shoji. Number of zeros of solutions to singular initial value problems. Tohoku Math. J. (2) 50 (1998), no. 1, 1--22. doi:10.2748/tmj/1178225013. https://projecteuclid.org/euclid.tmj/1178225013


Export citation

References

  • [1] F. V. ATKINSON, On second order nonlinear oscillation, Pacific J. Math. 5 (1955), 643-647.
  • [2] C. V. COFFMAN AND D. F. ULLRICH, On the continuation of solutions of a certain non-linear differentia Equation, Monatsh. Math. 71 (1967), 385-392.
  • [3] W. -Y. DING and W. -M. Ni, On the elliptic equation Au-Kuin+ 2)n" 2) =0 and related topics, Duk Math. J. 52 (1985), 485-506.
  • [4] Y. KABEYA, E. YANAGIDA AND S. YOTSUTANI, Existence of nodal fast-decay solutions t divfl Vw 2VM) + #(|jc|)|i//" 1/=O in /?", Differential Integral Equations 9 (1996), 981-1004.
  • [5] N. KAWANO, W. -M. NI and S. YOTSUTANI, A generalized Pohozaev identity and its applications, J. Math. Soc. Japan 42 (1990), 541-564.
  • [6] N. KAWANO, E. YANAGIDA AND S. YOTSUTANI, Structure theorems for positive radial solutions t /+tf(|jt|)i/* =O in /?", Funkcial. Ekvac. 36 (1993), 557-579.
  • [7] N. KAWANO, E. YANAGIDA AND S. YOTSUTANI, Structure theorems for positive radial solutions t div{\Du\m-2Du) + K(\x)uq = Qi n*". J Math. Soc. Japan 45 (1993), 719-742.
  • [8] I. T. KIGURADZE, On the conditions of oscillation of solutions to the equation u" +a(t)\u\nsgn u=0, Casopis Pest. Mat. 87 (1962), 492-495. (in Russian).
  • [9] M. KITANO AND T. KUSANO, On a class of second order quasilinear ordinary differential equations, Hiroshima Math. J. 25 (1995), 321-355.
  • [10] T. KUSANO AND M. NAITO, Oscillation theory of entire solutions of second order superlinear ellipti equations. Funkcial. Ekvac. 30 (1987), 269-282.
  • [11] T. KUSANO, A. OGATA AND H. USAMI, Oscillation theory for a class of second order quasilinear ordinar differential equations with application to partial differential equations, Japan. J. Math. 19 (1993), 131-147.
  • [12] Y. Li AND W. -M. Ni, On the asymptotic behavior and radial symmetry of positive solutions of semi linear elliptic equations in /?", II, Arch. Rational Mech. Anal. 118 (1992), 223-244.
  • [13] W. -M. Ni AND J. SERRIN, Existence and non-existence theorems for ground states for quasilinear partia differential equations, Atti Convegni Lincei, 77(1985), 231-257.
  • [14] S. I. POHOZAEV, Eigenfunctions ofthe equation w+ f{) =0, Soviet Math. Dokl. 5(1965), 1408-1411
  • [15] E. YANAGIDA, Structure of radial solutions to Au +K{\x)\u\p lu= 0 in Rn, SI AM J. Math. Anal. 2 (1996), 997-1014.
  • [16] E. YANAGIDA AND S. YOTSUTANI, Classification of the structure of positive radial solutions t Au +K(\x)\u\p 1u =0 in R Arch. Rational Mech. Anal. 124 (1993), 239-259.
  • [17] E. YANAGIDA AND S. YOTSUTANI, Existence of nodal fast-decay solutions to u + K{\x in Rn, Nonlinear Anal. 22(1994), 1005-1015.\u\p
  • [18] W. -M. Ni, On a singular elliptic equation, Proc. Amer. Math. Soc. 88(1983), 614-616