Tohoku Mathematical Journal

Mean curvature {$1$} surfaces of Costa type in hyperbolic three-space

Celso J. Costa and Vicente F. Sousa Neto

Full-text: Open access

Abstract

In this paper we prove the existence of families of complete mean curvature one surfaces in the hyperbolic three-space. We show that for each Costa-Hoffman-Meeks embedded minimal surface of positive genus in Euclidean three-space, we can produce, by cousin correspondence, a family of complete mean curvature one surfaces in the hyperbolic three-space. These surfaces have positive genus, three ends and the same group of symmetry of the original minimal surfaces. Furthermore, two of the ends approach the same point in the ideal boundary of hyperbolic three-space and the third end is asymptotic to a horosphere. The method we use to produce these results were developed in a recent paper by W. Rossman, M. Umehara and K. Yamada.

Article information

Source
Tohoku Math. J. (2), Volume 53, Number 4 (2001), 617-628.

Dates
First available in Project Euclid: 11 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1113247804

Digital Object Identifier
doi:10.2748/tmj/1113247804

Mathematical Reviews number (MathSciNet)
MR1862222

Zentralblatt MATH identifier
1014.53007

Subjects
Primary: 53A10: Minimal surfaces, surfaces with prescribed mean curvature [See also 49Q05, 49Q10, 53C42]

Citation

Costa, Celso J.; Sousa Neto, Vicente F. Mean curvature {$1$} surfaces of Costa type in hyperbolic three-space. Tohoku Math. J. (2) 53 (2001), no. 4, 617--628. doi:10.2748/tmj/1113247804. https://projecteuclid.org/euclid.tmj/1113247804


Export citation

References

  • R. Bryant, Surfaces of mean curvature one in hyperbolic space, Astérisque No. 154--155 (1987), 321--347.
  • C. Costa, Imersões mínimas completas em $\bfR^3$ de gênero um e curvatura total finita, Ph. D. Thesis, IMPA, Rio de Janeiro, Brasil, 1982.
  • C. Costa, Example of a complete immersion in $\bfR^3$ of genus one and three embedded ends Bol. Soc.<br/> Brasil. Mat. 15 (1984), 47--54.
  • L. P. Jorge and W. Meeks, The topology of complete minimal surfaces of finite total Gaussian curvature, Topology 22 (1983), 203--221.
  • L. L. Lima and W. Rossman, On the index of constant mean curvature 1 surfaces in hyperbolis space, Indiana Univ. Math. J. 47 (1998), 685--723.
  • V. F. S. Neto, Costa type surfaces in hyperbolic space, An. Acad. Brasil. Ciênc. 71 (1999), 333--338.
  • R. Osserman, A Survey of Minimal Surfaces, Dover Publications, New York, 2nd edition, 1986.
  • W. Rossman, M. Umehara and K. Yamada, Irreducible constant mean curvature 1 surfaces in hyperbolic space with positive genus, Tôhoku Math. J. 49 (1997), 449--484.
  • R. Sa Earp and E. Toubiana, On the geometry of constant mean curvature one surfaces in hyperbolic space, preprint.
  • M. Umehara and K. Yamada, Complete surfaces of constant mean curvature 1 in the hyperbolic 3-space, Ann. of Math. 137 (1993), 611--638.
  • M. Umehara and K. Yamada, A parametrization of the Weierstrass formulae and perturbation of some minimal surfaces in $\bfR^3$ into the hyperbolic 3-space, J. Reine Angew. Math. 432 (1992), 93--116.
  • M. Umehara and K. Yamada, A duality on CMC-1 surfaces in the hyperbolic space and hyperbolic analogue of the Osserman inequality, Tsukuba J. Math. 21 (1997), 229--237.
  • Wohlgemuth, Higher genus minimal surfaces by growing handles out of a catenoid, Manuscripta Math. 70 (1991), 397--428.
  • Wohlgemuth, Vollstandige Minimalflachen hoheren Geschlechts und endlicher Totalkümmung, Ph. D. Thesis, University of Bonn, Bonn, 1993.