Tohoku Mathematical Journal

The behavior of the principal distributions on the graph of a homogeneous polynomial

Naoya Ando

Full-text: Open access

Abstract

In this paper, we shall study the behavior of the principal distributions on the graph of a homogeneous polynomial in two variables such that the set of its umbilical points is finite. In particular, we shall present a method of describing the indices of the umbilical points and the point at infinity.

Article information

Source
Tohoku Math. J. (2), Volume 54, Number 2 (2002), 163-177.

Dates
First available in Project Euclid: 11 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1113247561

Digital Object Identifier
doi:10.2748/tmj/1113247561

Mathematical Reviews number (MathSciNet)
MR1904947

Zentralblatt MATH identifier
1022.53006

Subjects
Primary: 53A05: Surfaces in Euclidean space
Secondary: 58K45: Singularities of vector fields, topological aspects

Citation

Ando, Naoya. The behavior of the principal distributions on the graph of a homogeneous polynomial. Tohoku Math. J. (2) 54 (2002), no. 2, 163--177. doi:10.2748/tmj/1113247561. https://projecteuclid.org/euclid.tmj/1113247561


Export citation

References

  • N. Ando, An isolated umbilical point of the graph of a homogeneous polynomial, Geom. Dedicata 82 (2000), 115--137.
  • N. Ando, The behavior of the principal distributions around an isolated umbilical point, J. Math. Soc. Japan 53 (2001), 237--260.
  • C. Gutierrez and F. Sanchez-Bringas, Planer vector field versions of Carathéodory's and Loewner's conjectures, Publ. Mat. 41 (1997), 169--179.
  • P. Hartman and A. Wintner, Umbilical points and W-surfaces, Amer. J. Math. 76 (1954), 502--508.
  • H. Hopf, Lectures on differential geometry in the large, Lecture Notes in Math. vol. 1000, Springer-Verlag, Berlin-New York, 1989.
  • T. Klotz, On Bol's proof of Carathéodory's conjecture, Comm. Pure Appl. Math. 12 (1959), 277--311.
  • B. Smyth and F. Xavier, A sharp geometric estimate for the index of an umbilic on a smooth surface, Bull. London Math. Soc. 24 (1992), 176--180.
  • B. Smyth and F. Xavier, Real solvability of the equation $\partial^2_\barz\omega=\rho\text\g$ and the topology of isolated umbilics, J. Geom. Anal. 8 (1998), 655--671.
  • C. J. Titus, A proof of a conjecture of Loewner and of the conjecture of Carathéodory on umbilic points, Acta Math. 131 (1973), 43--77.