Tohoku Mathematical Journal

On the real secondary classes of transversely holomorphic foliations. II

Taro Asuke

Full-text: Open access

Abstract

An algorithm to find a basis of the space of complex secondary classes of transversely holomorphic foliations is given. The mapping which relates the real secondary classes to the complex secondary classes is completely described when the complex codimension of the foliation is either two or three. Finally, it is shown that the image of real secondary classes under this mapping is naturally reduced under a certain condition.

Article information

Source
Tohoku Math. J. (2), Volume 55, Number 3 (2003), 361-374.

Dates
First available in Project Euclid: 11 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1113247479

Digital Object Identifier
doi:10.2748/tmj/1113247479

Mathematical Reviews number (MathSciNet)
MR1993861

Zentralblatt MATH identifier
1049.58023

Subjects
Primary: 32S65: Singularities of holomorphic vector fields and foliations
Secondary: 57R30: Foliations; geometric theory 58H10: Cohomology of classifying spaces for pseudogroup structures (Spencer, Gelfand-Fuks, etc.) [See also 57R32]

Keywords
Foliations Transverse holomorphic structure Characteristic classes

Citation

Asuke, Taro. On the real secondary classes of transversely holomorphic foliations. II. Tohoku Math. J. (2) 55 (2003), no. 3, 361--374. doi:10.2748/tmj/1113247479. https://projecteuclid.org/euclid.tmj/1113247479


Export citation

References

  • T. Asuke, On the real secondary classes of transversely holomorphic foliations, University of Tokyo, Thesis.
  • T. Asuke, On the real secondary classes of transversely holomorphic foliations, Ann. Inst. Fourier 50 (2000), 995--1017.
  • T. Asuke, The Godbillon-Vey class of transversely holomorphic foliations, preprint.
  • T. Asuke, Complexification of foliations and complex secondary classes, to appear in Bull. Braz. Math. Soc. (N.S.).
  • P. Baum and R. Bott, Singularities of Holomorphic Foliations, J. Differential Geom. 7 (1972), 279--342.
  • R. Bott, On the Lefschetz Formula and Exotic Characteristic Classes, Symposia Math. 10 (1972), 95--105.
  • R. Bott, S. Gitler and I. M. James, Lectures on Algebraic and Differential Topology, Lecture Notes in Math. 279, Springer-Verlag, Berlin, 1972.
  • R. Bott and A. Haefliger, On characteristic classes of $\Gamma$-foliations, Bull. Amer. Math. Soc. 78 (1972), 1039--1044.
  • C. Godbillon, Cohomologies d'algèbres de Lie de champs de vecteurs formels, Séminaire Bourbaki (1972/73), No. 421, Lecture Notes in Math. 383, Springer-Verlag, Berlin, 1974, pp. 69--87.
  • D. Husemoller, Fibre Bundles, Graduate Texts in Mathematics 20, Springer-Verlag, New York, 1994.
  • H. V. Pittie, Characteristic classes of foliations, Research Notes in Mathematics 10, Pitman Publishing, London-San Francisco, Calif.-Melbourne, 1976.
  • O. H. Rasmussen, Exotic Characteristic Classes for Holomorphic Foliations, Invent. Math. 46 (1978), 153--171.

See also

  • Related Article: On the real secondary classes of transversely holomorphic foliations. Ann. Inst. Fourier (Grenoble) 50 (2000), no. 3, 995--1017.