Tohoku Mathematical Journal

Groupes de Lie pseudo-riemanniens plats

Anne Aubert and Alberto Medina

Full-text: Open access

Abstract

The determination of affine Lie groups (i.e., which carry a left-invariant affine structure) is an open problem. In this work we begin the study of Lie groups with a left-invariant, flat pseudo-Riemannian metric (flat pseudo-Riemannian groups). We show that in such groups the left-invariant affine structure defined by the Levi-Civita connection is geodesically complete if and only if the group is unimodular. We also show that the cotangent manifold of an affine Lie group is endowed with an affine Lie group structure and a left-invariant, flat hyperbolic metric. We describe a double extension process which allows us to construct all nilpotent, flat Lorentzian groups. We give examples and prove that the only Heisenberg group which carries a left invariant, flat pseudo-Riemannian metric is the three dimensional one.

Article information

Source
Tohoku Math. J. (2), Volume 55, Number 4 (2003), 487-506.

Dates
First available in Project Euclid: 11 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1113247126

Digital Object Identifier
doi:10.2748/tmj/1113247126

Mathematical Reviews number (MathSciNet)
MR2017221

Zentralblatt MATH identifier
1058.53055

Subjects
Primary: 53C50: Lorentz manifolds, manifolds with indefinite metrics
Secondary: 22E60: Lie algebras of Lie groups {For the algebraic theory of Lie algebras, see 17Bxx}

Keywords
Flat pseudo-Riemannian Lie groups affine Lie groups geodesic completeness

Citation

Aubert, Anne; Medina, Alberto. Groupes de Lie pseudo-riemanniens plats. Tohoku Math. J. (2) 55 (2003), no. 4, 487--506. doi:10.2748/tmj/1113247126. https://projecteuclid.org/euclid.tmj/1113247126


Export citation

References

  • A. Albert, Structure of Algebras, Amer. Math. Soc. Colloq. Publ.24, American Mathematical Society, New York, 1939.
  • A. Aubert, Thèse de doctorat, Université Montpellier II, 1996.
  • M. Bordemann, Invariante Bilinearformen auf endlich-dimensionalen Algebren, Diplomarbeit, Mathematische Fakultät, Universität Freiburg, F.R.G., 1988.
  • J. M. Dardié and A. Medina, Double-extension symplectique d'un groupe de Lie symplectique, Adv. Math. 117 (1996), 208--227.
  • J. Helmstetter, Radical et groupe formel d'une algèbre symétrique à gauche, thèse de doctorat de 3ème cycle, Université de Grenoble, 1975.
  • J. Helmstetter, Radical d'une algèbre symétrique à gauche, Ann. Inst. Fourier (Grenoble) 29 (1979), 17--35.
  • J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics 9, Springer-Verlag, NewYork-Berlin, 1972.
  • A. Medina, Flat left-invariant connections adapted to the automorphism structure of a Lie group, J. Differential Geom. 16 (1981), 445--474.
  • A. Medina and P. Revoy, Groupes de Lie à structure symplectique invariante, Symplectic geometry, groupoids, and integrable systems (Berkeley, CA, 1989), 247--266, Math. Sci. Res. Inst. Publ. 20, Springer Verlag, New York, 1991.
  • A. Medina and P. Revoy, Algèbres de Lie et produit scalaire invariant, Ann. Sci. École Norm. Sup. (4) 18 (1985), 553--561.
  • J. Milnor, Curvatures of Left Invariant Metrics On Lie Groups, Adv. in Math. 21 (1976), 293--329.
  • J. Milnor, On fundamental group of complete affinely flat manifolds, Adv. in Math. 25 (1977), 178--187.
  • A. Nijenhuis, Sur une classe de propriétés communes à quelques types différents d'algèbres, Enseignement Math. (2) 14 (1968), 225--277.
  • H. Shima, On certain locally flat homogeneous manifolds of solvable Lie groups, Osaka J. Math. 13 (1976), 213--229.
  • H. Shima, Homogeneous Hessian manifolds, Ann. Inst. Fourier (Grenoble) 30 (1980), 91--128.