Tohoku Mathematical Journal

Remarks on Hausdorff dimensions for transient limit sets of Kleinian groups

Kurt Falk and Bernd O. Stratmann

Full-text: Open access


In this paper we study normal subgroups of Kleinian groups as well as discrepancy groups (d-groups), that are Kleinian groups for which the exponent of convergence is strictly less than the Hausdorff dimension of the limit set. We show that the limit set of a d-group always contains a range of fractal subsets, each containing the set of radial limit points and having Hausdorff dimension strictly less than the Hausdorff dimension of the whole limit set. We then consider normal subgroups $G$ of an arbitrary non-elementary Kleinian group $H$, and show that the exponent of convergence of $G$ is bounded from below by half of the exponent of convergene of $H$. Finally, we give a discussion of various examples of d-groups.

Article information

Tohoku Math. J. (2), Volume 56, Number 4 (2004), 571-582.

First available in Project Euclid: 11 April 2005

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 30F40: Kleinian groups [See also 20H10]
Secondary: 37F35: Conformal densities and Hausdorff dimension

Kleinian groups exponent of convergence fractal geometry


Falk, Kurt; Stratmann, Bernd O. Remarks on Hausdorff dimensions for transient limit sets of Kleinian groups. Tohoku Math. J. (2) 56 (2004), no. 4, 571--582. doi:10.2748/tmj/1113246751.

Export citation


  • T. Akaza and H. Furusawa, The exponent of convergence of Poincaré series of some Kleinian groups, Tôhoku Math. J. 32 (1980), 447--452.
  • A. F. Beardon, The Hausdorff dimension of singular sets of properly discontinuous groups, Amer. J. Math. 88 (1966), 722--736.
  • A. F. Beardon, Inequalities for certain Fuchsian groups, Acta Math. 127 (1971), 221--258.
  • A. F. Beardon, The Geometry of Discrete Groups, Springer Verlag, New York, 1983.
  • C. J. Bishop, The linear escape limit set, Proc. Amer. Math. Soc. 132 (2004), 1385--1388.
  • C. J. Bishop and P. W. Jones, Hausdorff dimension and Kleinian groups, Acta Math. 56 (1997), 1--39.
  • R. Brooks, The fundamental group and the spectrum of the Laplacian, Comment. Math. Helv. 56 (1981), 581--598.
  • R. Brooks, The bottom of the spectrum of a Riemannian covering, J. Reine Angew. Math. 357 (1985), 101--114.
  • K. J. Falconer, Fractal Geometry, Mathematical Foundations and Applications, J. Wiley, 1990.
  • E. Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig 91 (1939), 261--304.
  • T. Lundh, Geodesics on quotient manifolds and their corresponding limit points, Michigan Math. J. 51 (2003), 279--304.
  • K. Matsuzaki, The Hausdorff dimension of the limit sets of infinitely generated Kleinian groups, Math. Proc. Cambridge Philos. Soc. 128 (2000), 123--139.
  • K. Matsuzaki, Conservative action of Kleinian groups with respect to the Patterson-Sullivan measure, Comput. Methods Funct. Theory 2 (2002), 469--479.
  • K. Matsuzaki and M. Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford Math. Monographs, 1998.
  • P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge University Press, Cambridge, 1995.
  • P. J. Nicholls, The Ergodic Theory of Discrete Groups, Cambridge University Press, Cambridge, 1989.
  • J. R. Parker and B. O. Stratmann, Kleinian groups with singly cusped parabolic fixed points, Kodai Math. J. 24 (2001), 169--206.
  • S. J. Patterson, The exponent of convergence of Poincaré series, Monatsh. Math. 82 (1976), 297--315.
  • S. J. Patterson, Some examples of Fuchsian groups, Proc. London Math. Soc. (3) 39 (1979), 276--298.
  • S. J. Patterson, Further remarks on the exponent of convergence of Poincaré series, Tôhoku Math. J. 35 (1983), 357--373.
  • S. J. Patterson, Lectures on measures on limit sets of Kleinian groups, Analytical and geometric aspects of hyperbolic space, editor D.B.A. Epstein, Cambridge University Press, Cambridge, 1987.
  • Ch. Pommerenke, On the Green's function of Fuchsian groups, Ann. Acad. Sci. Fenn. A1 Math 2 (1976), 409--427.
  • M. Rees, Checking ergodicity of some geodesic flows with infinite Gibbs measure, Ergodic Theory Dynamical Systems 1 (1981), 107--133.
  • M. Rees, Divergence type of some subgroups of finitely generated Fuchsian groups, Ergodic Theory Dynamical Systems 1 (1981), 209--221.
  • B. O. Stratmann, A note on counting cuspidal excursions, Annal. Acad. Sci. Fenn. 20 (1995), 359--372.
  • B. O. Stratmann, The exponent of convergence of Kleinian groups; on a theorem of Bishop and Jones, preprint in Mathematica Gottingensis 1 (2001), 1--16; to appear in Proceedings of `Fractal Geometry and Stochastics' (Friedrichroda, 2003).
  • B. O. Stratmann, Fractal Geometry on Hyperbolic Manifolds, Mathematica Gottingensis 09 (2003), 1--20; to be published in Proceedings of the `Janos Bolyai Conference on Hyperbolic Geometry' (Budapest, 2002); Kluwer Acad. Publ.
  • D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171--202.
  • D. Sullivan, A finiteness theorem for cusps, Acta Math. 147 (1981), 289--299.
  • D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surfaces and related topics, Ann. of Math. Stud. 97 (1981), 465--496.
  • P. Tukia, Conservative action and the horospheric limit set, Ann. Acad. Sci. Fenn. 22 (1997), 387--394.
  • N. T. Varopoulos, Finitely generated Fuchsian groups, J. Reine Angew. Math. 375/376 (1987), 394--405.
  • S. Wagon, The Banach-Tarski paradox, Cambridge University Press, 1986.
  • R. J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, 81. Birkhäuser Verlag, Basel, 1984.