Tohoku Mathematical Journal

Meromorphic data for mean curvature one surfaces in hyperbolic three-space

Ricardo Sa Earp and Eric Toubiana

Full-text: Open access

Abstract

In this paper we construct meromorphic data and prove a representation theorem for mean curvature one conformal immersions into the hyperbolic three-space. We also give various examples.

Article information

Source
Tohoku Math. J. (2), Volume 56, Number 1 (2004), 27-64.

Dates
First available in Project Euclid: 11 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.tmj/1113246380

Digital Object Identifier
doi:10.2748/tmj/1113246380

Mathematical Reviews number (MathSciNet)
MR2028917

Zentralblatt MATH identifier
1063.53010

Subjects
Primary: 53A10: Minimal surfaces, surfaces with prescribed mean curvature [See also 49Q05, 49Q10, 53C42]
Secondary: 53A35: Non-Euclidean differential geometry

Keywords
Hyperbolic space half-space model mean curvature one conformal immersion euclidean Gauss map hyperbolic Gauss map

Citation

Sa Earp, Ricardo; Toubiana, Eric. Meromorphic data for mean curvature one surfaces in hyperbolic three-space. Tohoku Math. J. (2) 56 (2004), no. 1, 27--64. doi:10.2748/tmj/1113246380. https://projecteuclid.org/euclid.tmj/1113246380


Export citation

References

  • J. L. Barbosa and R. Sa Earp, Prescribed mean curvature hypersurfaces in $H^n+1 (-1)$ with convex planar boundary, I, Geom. Dedicata 71 (1998), 61--74.
  • J. L. Barbosa and R. Sa Earp, Prescribed mean curvature hypersurfaces in $H^n+1$ with convex planar boundary, II, Séminaire de théorie spectrale et géometrie de Grenoble 16 (1998), 43--79.
  • R. Bryant, Surfaces of mean curvature one in hyperbolic space, Asterisque 154--155 (1987), 321--347.
  • P. Collin, L. Hauswirth and H. Rosenberg, The geometry of finite topology Bryant surfaces, Ann. of Math. (2) 153 (2001), 623--659.
  • M. E. Galvão and C. C. Góes, A Weierstrass type representation for surfaces in hyperbolic space with mean curvature one, Note Mat. 18 (1998), 43--61.
  • K. Kenmotsu, Weierstrass formula for surfaces of prescribed mean curvature, Math. Ann. 20 (1979), 177--183.
  • B. Lawson, Complete minimal surfaces in $S^3$, Ann. of Math. (2) 92 (1970), 335--374.
  • L. L. de Lima and P. Roitman, Constant mean curvature one surfaces in hyperbolic 3-space using the Bianchi-Calò method, An. Acad. Brasil. Ciênc. 74 (2002), 19--24.
  • L. L. de Lima and W. Rossman, On the index of mean curvature 1 surfaces in $H^3$, Indiana Univ. Math. J. 47 (1998), 685--723.
  • B. Nelli, Hypersurfaces de courbure constante dans l'espace hyperbolique, Thèse de Doctorat Université Paris VII, 1995.
  • Revue du Palais de la Découverte (1995), no. 45, 106.
  • W. Rossman and K. Sato, Constant mean curvature surfaces with two ends in hyperbolic 3-space, Experiment. Math. 7 (1998), 101--119.
  • W. Rossman, M. Umehara and K. Yamada, Irreducible constant mean curvature 1 surfaces in hyperbolic space with positive genus, Tôhoku Math. J. 49 (1997), 449--484.
  • W. Rossman, M. Umehara and K. Yamada, Constructing mean curvature 1 surfaces in $\textit\textbf H^3$ with irregular ends, Preprint.
  • W. Rossman, M. Umehara and K. Yamada, Mean curvature 1 surfaces in hyperbolic 3-space with low total curvature, Preprint; math.DG/0008015.
  • A. J. Small, Surfaces of constant mean curvature 1 in $\hi3$ and algebraic curves on a quadric, Proc. Amer. Math. Soc. 122 (1994), 1211--1220.
  • R. Sa Earp and E. Toubiana, On the geometry of constant mean curvature one surfaces in hyperbolic space, Illinois J. Math. 45 (2001), 371--401.
  • R. Sa Earp and E. Toubiana, Existence and uniqueness of minimal graphs in hyperbolic space, Asian J. Math. 4 (2000), 669--694.
  • R. Sa Earp and E. Toubiana, Some applications of maximum principle to hypersurfaces theory in euclidean and hyperbolic space, New Approaches in Nonlinear Analysis (T. M. Rassias, Hadronic Press Inc, Florida, USA, 183--202, eds.), 1999.
  • R. Sa Earp and E. Toubiana, Introduction à la géométrie hyperbolique et aux surfaces de Riemann, Diderot Editeur 1997, Second edition, Cassini, Paris, to appear.
  • R. Sa Earp and E. Toubiana, Meromorphic data for mean curvature one surfaces in hyperbolic space II, Clay Math. Proc. 3 (2003), 521--540.
  • R. Sa Earp and E. Toubiana, A Weirstrass-Kenmotsu formula for prescribed mean curvature surfaces in hyperbolic space, Séminaire de Théorie Spectrale et Géométrie de l'Institut Fourier de Grenoble 19 (2001), 9--23.
  • M. Umehara and K. Yamada, Complete surfaces of constant mean curvature-1 in the hyperbolic 3-space, Ann. of Math. 137 (1993), 611--638.
  • M. Umehara and K. Yamada, A parametrization of the Weierstrass formulae and perturbation of some minimal surfaces in $R^3$ into the hyperbolic $3$-space, J. Reine Angew. Math. 432 (1992), 93--116.
  • M. Umehara and K. Yamada, Surfaces of constant mean curvature $c$ in $H^3(-c^2)$ with prescribed Gauss map, Math. Ann. 304 (1996), 203--224.