Tsukuba Journal of Mathematics

Bound for the Weierstrass weights of points on a smooth plane algebraic curve

Satoru Kikuchi

Full-text: Open access

Abstract

Let $C$ be a smooth plane algebraic curve of degree $n\geq 3$. We give the upper bound for the weights of points on $C$ and if $C$ has an involution, i.e., an automorphism of order 2, then we give the lower bound for the weights of fixed points of the involution on $C$. Furthermore, we obtain all the possible Weierstrass gap sequences and weights of fixed points of the involution for the case $n=5$ or 6.

Article information

Source
Tsukuba J. Math., Volume 27, Number 2 (2003), 359-374.

Dates
First available in Project Euclid: 30 May 2017

Permanent link to this document
https://projecteuclid.org/euclid.tkbjm/1496164654

Digital Object Identifier
doi:10.21099/tkbjm/1496164654

Mathematical Reviews number (MathSciNet)
MR2025733

Zentralblatt MATH identifier
1077.14042

Citation

Kikuchi, Satoru. Bound for the Weierstrass weights of points on a smooth plane algebraic curve. Tsukuba J. Math. 27 (2003), no. 2, 359--374. doi:10.21099/tkbjm/1496164654. https://projecteuclid.org/euclid.tkbjm/1496164654


Export citation