Tsukuba Journal of Mathematics

A normal form for arithmetical derivations implying the $\omega$-consistency of arithmetic

Kazuma Ikeda

Full-text: Open access

Abstract

We give a normal form theorem for arithmetical derivations. It is proved by induction up to $\epsilon_{1}$ and implies the $\omega-$ consistency of arithmetic.

Article information

Source
Tsukuba J. Math., Volume 21, Number 2 (1997), 285-304.

Dates
First available in Project Euclid: 30 May 2017

Permanent link to this document
https://projecteuclid.org/euclid.tkbjm/1496163242

Digital Object Identifier
doi:10.21099/tkbjm/1496163242

Mathematical Reviews number (MathSciNet)
MR1473923

Zentralblatt MATH identifier
0895.03024

Citation

Ikeda, Kazuma. A normal form for arithmetical derivations implying the $\omega$-consistency of arithmetic. Tsukuba J. Math. 21 (1997), no. 2, 285--304. doi:10.21099/tkbjm/1496163242. https://projecteuclid.org/euclid.tkbjm/1496163242


Export citation