Tokyo Journal of Mathematics

On the Krull-Schmidt Decomposition of Mordell-Weil Groups

Daniel MACIAS CASTILLO

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let $A$ be an abelian variety defined over a number field $k$ and $p$ a prime number. Under some natural and not-too-stringent conditions on $A$ and $p$ we show that certain invariants associated to Iwasawa-theoretic $p$-adic Selmer groups control the Krull-Schmidt decompositions of the $p$-adic completions of the groups of points of $A$ over finite extensions of $k$.

Article information

Source
Tokyo J. Math., Volume 40, Number 2 (2017), 353-378.

Dates
First available in Project Euclid: 9 January 2018

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1515466831

Mathematical Reviews number (MathSciNet)
MR3743724

Zentralblatt MATH identifier
06855940

Subjects
Primary: 11G35: Varieties over global fields [See also 14G25]
Secondary: 11R33: Integral representations related to algebraic numbers; Galois module structure of rings of integers [See also 20C10] 11R34: Galois cohomology [See also 12Gxx, 19A31]

Citation

MACIAS CASTILLO, Daniel. On the Krull-Schmidt Decomposition of Mordell-Weil Groups. Tokyo J. Math. 40 (2017), no. 2, 353--378. https://projecteuclid.org/euclid.tjm/1515466831


Export citation

References

  • W. Bley and D. Macias Castillo, Congruences for critical values of higher derivatives of twisted Hasse-Weil $L$-functions, J. Reine U. Angew. Math. 722 (2017), 105–136.
  • D. Burns, On the Galois structure of arithmetic cohomology I: compactly supported $p$-adic cohomology, to appear in Nagoya Math. J.
  • D. Burns and A. Kumon, On the Galois structure of arithmetic cohomology II: ray class groups, to appear in J. Math. Soc. Japan.
  • D. Burns, On the Galois structure of arithmetic cohomology III: Selmer groups of critical motives, to appear in Kyoto J. Math.
  • D. Burns, D. Macias Castillo and C. Wuthrich, On the Galois structure of Selmer groups, Int. Math. Res. Notices 2015 (2015), 11909–11933.
  • D. Burns, D. Macias Castillo and C. Wuthrich, On Mordell-Weil groups and congruences between derivatives of twisted Hasse-Weil $L$-functions, to appear in J. Reine U. Angew. Math.
  • F. E. Diederichsen, Über die Ausreduktion ganzahliger Gruppendarstellungen bei arithmetischer Aquivalenz, Abh. Math. Sem. Univ. Hamburg 14 (1940), 357–412.
  • R. Greenberg, Galois Theory for the Selmer Group of an Abelian Variety, Compos. Math. 136 (2003), 255–297.
  • A. Heller and I. Reiner, Representations of cyclic groups in rings of integers. I, Ann. Math. 76 (1962), 73–92.
  • A. Heller and I. Reiner, Representations of cyclic groups in rings of integers. II, Ann. Math. 77 (1963), 318–328.
  • B. Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183–266.
  • B. Mazur and K. Rubin, Organizing the arithmetic of elliptic curves, Adv. Math. 198 (2005), 504–546.
  • M. Rzedowski-Calderón, G. D. Villa Salvador and M. L. Madan, Galois module structure of rings of integers, Math. Z. 204 (1990), 401–424.
  • A. V. Yakovlev, Homological definability of $p$-adic representations of groups with cyclic Sylow $p$-subgroup, An. St. Univ. Ovidius Constanţa 4 (1996), 206–221.