Tokyo Journal of Mathematics

Maps Which Preserve a Certain Norm Condition between the Exponential Groups of Uniform Algebras

Tatsuya NOGAWA

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let $\A_j$ be a uniform algebra with a Choquet boundary $Ch\A_j$, $j = 1, 2$. In this paper we prove that if $\phi : \exp\A_1 \to \exp\A_2$ is a surjection and satisfies the equality \begin{equation*} \max \left\{ \left\| \frac{\phi (f)}{\phi (g)} -1 \right\|_\infty, \left\| \frac{\phi (g)}{\phi (f)} -1 \right\|_\infty \right \} =\max \left\{ \left\| \frac{f}{g} -1 \right\|_\infty, \left\| \frac{g}{f} -1 \right\|_\infty \right \} \end{equation*} for any $f, g \in \exp\A_1$, then $\phi$ is of the form \begin{equation*} \phi(f)(y) = \left\{ \begin{array}{ll} \phi(1)(y) f(\varphi(y))^{\kappa(y)} & \text{for}~ y \in K, \\ \phi(1)(y) \overline{f(\varphi(y))}^{\kappa(y)} & \text{for}~ y \in Ch\A_2 \setminus K \\ \end{array} \right. \end{equation*} for any $f \in \exp\A_1$, where $\kappa$ is a continuous function from $Ch\A_2$ into $\{ 1, -1 \}$, $\varphi$ is a homeomorphism from $Ch\A_2$ onto $Ch\A_1$ and $K$ is a clopen subset of $Ch\A_2$.

Article information

Tokyo J. Math., Volume 39, Number 1 (2016), 39-44.

First available in Project Euclid: 22 August 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46J10: Banach algebras of continuous functions, function algebras [See also 46E25]
Secondary: 47B48: Operators on Banach algebras


NOGAWA, Tatsuya. Maps Which Preserve a Certain Norm Condition between the Exponential Groups of Uniform Algebras. Tokyo J. Math. 39 (2016), no. 1, 39--44. doi:10.3836/tjm/1471873311.

Export citation


  • R. J. Fleming and J. E. Jamison, Isometries on Banach spaces: function spaces, Chapman Hall/CRC Monogr. Surv. Pure Appl. Math., 129 Chapman & Hall/CRC, Boca Raton, 2003.
  • O. Hatori, G. Hirasawa, T. Miura and L. Molnár, Isometries and maps compatible with inverted Jordan triple products on groups, Tokyo J. Math. 35 (2012), 385–410.
  • O. Hatori, S. Lambert, A. Luttman, T. Miura, T. Tonev and R. Yates, Spectral preservers in commutative Banach algebras, Contemp. Math. 547 (2011), 103–123.
  • S. Mazur and S. Ulam, Sur les transformations isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris 194 (1932), 946–948.
  • T. Miura, Real-linear isometries between function algebras, Cent. Eur. J. Math. 9 (2011), 778–788.
  • T. Miura, D. Honma and R. Shindo, Divisibly norm-preserving maps between commutative Banach algebras, Rocky Mountain J. Math. 41 (2011), 1675–1699.
  • T. W. Palmer, Banach Algebras and the general theory of *-algebras. Vol. I. Algebras and Banach algebras, Encyclopedia of Math. Appl. 49, Cambridge Univ. Press, Cambridge, 1994.
  • J. Väisälä, A proof of the Mazur-Ulam theorem, Amer. Math. Monthly 110 (2003), 633–635.