Tokyo Journal of Mathematics

On Convergents of Certain Values of Hyperbolic Functions Formed from Diophantine Equations

Tuangrat CHAICHANA, Takao KOMATSU, and Vichian LAOHAKOSOL

Full-text: Open access

Abstract

Let $\xi=\sqrt{v/u}\tanh(uv)^{-1/2}$, where $u$ and $v$ are positive integers, and let $\eta=|h(\xi)|$, where $h(t)$ is a non-constant rational function with algebraic coefficients. We compute upper and lower bounds for the approximation of certain values $\eta$ of hyperbolic functions by rationals $x/y$ such that $x$ and $y$ satisfy Diophantine equations. We show that there are infinitely many coprime integers $x$ and $y$ such that $|y\eta-x|\ll\log\log y/\log y$ and a Diophantine equation holds simultaneously relating $x$ and $y$ and some integer $z$. Conversely, all positive integers $x$ and $y$ with $y\ge c_0$ solving the Diophantine equation satisfy $|y\eta-x|\gg\log\log y/\log y$.

Article information

Source
Tokyo J. Math., Volume 36, Number 1 (2013), 239-251.

Dates
First available in Project Euclid: 22 July 2013

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1374497522

Digital Object Identifier
doi:10.3836/tjm/1374497522

Mathematical Reviews number (MathSciNet)
MR3112386

Zentralblatt MATH identifier
1283.11103

Subjects
Primary: 11D09: Quadratic and bilinear equations
Secondary: 11D25: Cubic and quartic equations 11J04: Homogeneous approximation to one number 11J70: Continued fractions and generalizations [See also 11A55, 11K50]

Citation

CHAICHANA, Tuangrat; KOMATSU, Takao; LAOHAKOSOL, Vichian. On Convergents of Certain Values of Hyperbolic Functions Formed from Diophantine Equations. Tokyo J. Math. 36 (2013), no. 1, 239--251. doi:10.3836/tjm/1374497522. https://projecteuclid.org/euclid.tjm/1374497522


Export citation

References

  • E. B. Burger and A. M. Pillai, On Diophantine approximation along algebraic curves, Proc. Amer. Math. Soc. 136 (2008), 11–19.
  • H. Cohen, Number Theory, vol. I: Tools and Diophantine Equations, Springer, 2007.
  • H. Cohen, Number Theory, vol. II: Analytic and Modern Tools, Springer, 2007.
  • L. E. Dickson, History of the theory of numbers, vol. 2, Dover Publications, 2005.
  • C. Elsner, On arithmetic properties of the convergents of Euler's number, Colloq. Math. 79 (1999), 133–145.
  • C. Elsner, On rational approximations by Pythagorean numbers, Fibonacci Quart. 41 (2003), 98–104.
  • C. Elsner and T. Komatsu, A recurrence formula for leaping convergents of non-regular continued fractions, Linear Algebra Appl. 428 (2008), 824–833.
  • C. Elsner, T. Komatsu and I. Shiokawa, Approximation of values of hypergeometric functions by restricted rationals, J. Théorie des Nombres de Bordeaux 19 (2007), 387–399.
  • C. Elsner, T. Komatsu and I. Shiokawa, On convergents formed from Diophantine equations, Glasnik Mat. 44 (2009), 267–284.
  • C. Georgikopoulos, Rational integral solutions of the equations $x^3+4y^3=z^2$ and $x^3+2y^3=z^2$, Bull. Soc. Math. Gréce 24 (1948), 13–19.
  • T. Komatsu, On Tasoev's continued fractions, Math. Proc. Cambridge Philos. Soc. 134 (2003), 1–12.
  • T. Komatsu, Arithmetical properties of the leaping convergents of $e^{1/s}$, Tokyo J. Math. 27 (2004), 1–12.
  • T. Komatsu, Hurwitz and Tasoev continued fractions, Monatsh. Math. 145 (2005), 47–60.
  • T. Komatsu, Leaping convergents of Hurwitz continued fractions, in Diophantine Analysis and related fields (DARF 2007/2008), AIP Conf. Proc. 976, Amer. Inst. Phys., Melville, NY, 2008, pp.130–143.
  • L. J. Mordell, Diophantine equations, Academic Press, London and New York, 1969.
  • O. Perron, Die Lehre von den Kettenbrüchen, Chelsea, New York, 1950.
  • B. G. Tasoev, Rational approximations to certain numbers (Russian), Mat. Zametki 67 (2000), 931–937; English transl. in Math. Notes 67 (2000), 786–791.