Tokyo Journal of Mathematics

Heat Kernel Estimates for Random Walks on Some Kinds of One-dimensional Continuum Percolation Clusters


Full-text: Open access


We consider random walks on random graphs determined by a some kind of continuum percolation on $\mathbf{R}$. The vertex set of the random graph is given by the Poisson points conditioned that all points of $\mathbf{Z}$ are contained. The edge set of the random graph is determined by the random radii of the spheres centered at each points. We give heat kernel estimates for the random walks under the condition on the moment of the random radii. We will also discuss random walks on continuum percolation clusters in $\mathbf{R}^d$, $d\ge 2$.

Article information

Tokyo J. Math., Volume 34, Number 1 (2011), 1-17.

First available in Project Euclid: 11 August 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


MISUMI, Jun. Heat Kernel Estimates for Random Walks on Some Kinds of One-dimensional Continuum Percolation Clusters. Tokyo J. Math. 34 (2011), no. 1, 1--17. doi:10.3836/tjm/1313074443.

Export citation


  • Barlow, M. T., Random walks on supercritical percolation clusters, Ann. Probab., 32 (2004), 3024–3084.
  • Barlow, M. T., Járai, A. A., Kumagai, T. and Slade, G., Random walk on the incipient infinite cluster for oriented percolation in high dimensions, Comm. Math. Phys., 278 (2008), 385–431.
  • Barlow, M. T. and Kumagai, T., Random walk on the incipient infinite cluster on trees, Illinois J. Math., 50 (2006), 33–65 (Doob volume).
  • Berger, N., Transience, recurrence and critical behavior for long-range percolation, Comm. Math. Phys., 226 (2002), 531–558.
  • Crawford, N. and Sly, A., Heat kernel upper bounds on long range percolation clusters, arXiv :0907.2434 (2009).,
  • Grimmett, G. R., Kesten, H. and Zhang, Y., Random walk on the infinite cluster of the percolation model, Probab. Theory Related Fields., 96 (1993), 33–44.
  • Kumagai, T. and Misumi, J., Heat kernel estimates for strongly recurrent random walk on random media, J. Theoret. Probab., 21 (2008), 910–935.
  • Meester, R. and Roy, R., Continuum percolation, Cambridge University Press, Cambridge, (1996).,
  • Tanemura, H., Homogenization of a reflecting barrier Brownian motion in a continuum percolation cluster in ${\bR}^d$, Kodai Math. J., 17 (1994), 228–245.
  • Wang, J., Random walk on the Poisson points of infinite cluster of the continuous percolation, Math. Japon., 48 (1998), 391–397.