Tokyo Journal of Mathematics

Three-Interval Exchange Transformation and its Odometer Representation

Yuko ICHIKAWA and Shunji ITO

Full-text: Open access

Abstract

It is well known that 2-interval exchange transformation is isomorphic to the odometer transformation on some symbolic space and isomorphism is given by Ostrowski representation formula. The purpose of this paper is to extend these results to the case of 3-interval exchange transformation.

Article information

Source
Tokyo J. Math., Volume 32, Number 2 (2009), 447-469.

Dates
First available in Project Euclid: 22 January 2010

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1264170243

Digital Object Identifier
doi:10.3836/tjm/1264170243

Mathematical Reviews number (MathSciNet)
MR2589956

Zentralblatt MATH identifier
1196.37007

Citation

ICHIKAWA, Yuko; ITO, Shunji. Three-Interval Exchange Transformation and its Odometer Representation. Tokyo J. Math. 32 (2009), no. 2, 447--469. doi:10.3836/tjm/1264170243. https://projecteuclid.org/euclid.tjm/1264170243


Export citation

References

  • P. Arnoux, Substitutions in Dynamics, Arithmetics and Combinatorics (by N. Pytheas Fogg) Chapter 6, Springer Lecture Notes in Math. Vol. 1794.
  • Y. Hara, Sh. Ito, On real quadratic fields and periodic expansions, Tokyo J. Math., 12 (1989), No. 2, 357–370.
  • Sh. Ito, Some skew product transformations associated with continued fractions and their invariant measures, Tokyo J. Math., 9 (1986), 115–133.
  • S. Ito, K. Nakazawa, H. Rao, An Algorithm Related to Three-Interval-Exchange Transformation, preprint.
  • G. Rauzy, Exchanges D'intervalles et transformations induites, Acta. Arith., 34 (1979), 315–328.
  • A. Ostrowski, Bemerkungen zur Theorie der Diophantischen Approximation I, II, Abh. Math. Sem. Hamburg, 1 (1922), 77–98, 250–251.