Tokyo Journal of Mathematics

A Generalization of a Lemma by Schmitt and Vogel

Margherita BARILE

Full-text: Open access


We prove a generalization of a lemma by Schmitt and Vogel which will allow us to compute the arithmetical rank of new classes of monomial ideals.

Article information

Tokyo J. Math., Volume 32, Number 2 (2009), 435-440.

First available in Project Euclid: 22 January 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 13A15: Ideals; multiplicative ideal theory
Secondary: 13F55: Stanley-Reisner face rings; simplicial complexes [See also 55U10] 14M10: Complete intersections [See also 13C40]


BARILE, Margherita. A Generalization of a Lemma by Schmitt and Vogel. Tokyo J. Math. 32 (2009), no. 2, 435--440. doi:10.3836/tjm/1264170241.

Export citation


  • Barile, M., Arithmetical ranks of Stanley-Reisner ideals via linear algebra, Comm. Algebra, 36 (2008), 4540–4556.
  • Barile, M., On the arithmetical rank of an intersection of ideals, Algebra Colloq., 15 (2008), 681–688.
  • Bruns, W., Herzog, J., Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993.
  • Gräbe, H.-G., Über den arithmetischen Rang quadratfreier Potenzproduktideale, Math. Nachr., 120 (1985), 217–227.
  • Lyubeznik, G., On the local cohomology modules $H^i_\cal A(R)$ for ideals $\cal A$ generated by monomials in an $R$-sequence, in, Complete Intersections, Lectures given at the 1$^\rm st$ 1983 Session of the Centro Internazionale Matematico Estivo (C.I.M.E.), Acireale, Italy, June 13–21, 1983; Greco, S., Strano, R., Eds.; Springer: Berlin Heidelberg, 1984.
  • Matsumura, H., Commutative Ring Theory, Cambridge, 1986.
  • Nagel, U., Vogel, W., Über mengentheoretische Durchschnitte und Zusammenhang algebraischer Mannigfaltigkeiten, Arch. Math. (Basel), 49 (1987), 414–419.
  • Schenzel, P., Vogel, W., On set-theoretic complete intersections, J. Algebra, 48 (1977), 401–408.
  • Schmitt, Th., Vogel, W., Note on set-theoretic intersections of subvarieties of projective space, Math. Ann., 245 (1979), 247–253.
  • Terai, N., Arithmetical rank of monomial ideals, in Dai 25 kai kakan-kanron sinpojiumu houkokushu (Proceedings of the 25th Commutative Algebra Symposium), Tokyo, Japan, 99–105, 2003.