Tokyo Journal of Mathematics

Zariski-van Kampen Method and Transcendental Lattices of Certain Singular $K3$ Surfaces

Ken-ichiro ARIMA and Ichiro SHIMADA

Full-text: Open access

Abstract

We present a method of Zariski-van Kampen type for the calculation of the transcendental lattice of a complex projective surface. As an application, we calculate the transcendental lattices of complex singular $K3$ surfaces associated with an arithmetic Zariski pair of maximizing sextics of type $A_{10}+A_{9}$ that are defined over $\mathbf{Q}(\sqrt{5})$ and are conjugate to each other by the action of $\text{Gal}(\mathbf{Q}(\sqrt{5})/\mathbf{Q})$.

Article information

Source
Tokyo J. Math., Volume 32, Number 1 (2009), 201-227.

Dates
First available in Project Euclid: 7 August 2009

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1249648417

Digital Object Identifier
doi:10.3836/tjm/1249648417

Mathematical Reviews number (MathSciNet)
MR2541164

Zentralblatt MATH identifier
1182.14035

Subjects
Primary: 14J28: $K3$ surfaces and Enriques surfaces
Secondary: 14H50: Plane and space curves 14H25: Arithmetic ground fields [See also 11Dxx, 11G05, 14Gxx]

Citation

ARIMA, Ken-ichiro; SHIMADA, Ichiro. Zariski-van Kampen Method and Transcendental Lattices of Certain Singular $K3$ Surfaces. Tokyo J. Math. 32 (2009), no. 1, 201--227. doi:10.3836/tjm/1249648417. https://projecteuclid.org/euclid.tjm/1249648417


Export citation

References

  • E. Artal-Bartolo, Sur les couples de Zariski. J. Algebraic Geom., 3 (1994), 223–247.
  • E. Artal Bartolo, J. Carmona Ruber and J. I. Cogolludo Agust\' \i n, On sextic curves with big Milnor number, In, Trends in singularities, Trends Math., 1–29. Birkhäuser, Basel, 2002.
  • E. Artal Bartolo, J. Carmona Ruber and J. I. Cogolludo Agustí n, Effective invariants of braid monodromy, Trans. Amer. Math. Soc., 359 (2007) 165–183 (electronic).
  • J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, volume 290 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York, third edition, 1999.
  • A. Degtyarev, On deformations of singular plane sextics, J. Algebraic Geom., 17 (2008), 101–135.
  • Carl Friedrich Gauss, Disquisitiones arithmeticae, Springer-Verlag, New York, 1986. Translated and with a preface by Arthur A. Clarke, Revised by William C. Waterhouse, Cornelius Greither and A. W. Grootendorst and with a preface by Waterhouse.
  • K. Lamotke, The topology of complex projective varieties after S. Lefschetz, Topology, 20 (1981), 15–51.
  • V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat., 43 (1979), 111–177, 238. English translation: Math USSR-Izv. 14 (1979), no. 1, 103–167 (1980).
  • M. Oka, Symmetric plane curves with nodes and cusps, J. Math. Soc. Japan, 44 (1992), 375–414.
  • U. Persson, Horikawa surfaces with maximal Picard numbers, Math. Ann., 259 (1982), 287–312.
  • U. Persson, Double sextics and singular $K$-$3$ surfaces, in, Algebraic geometry, Sitges (Barcelona), 1983, volume 1124 of Lecture Notes in Math., 262–328. Springer, Berlin, 1985.
  • I. I. Pjateckiĭ-Šapiro and I. R. Šafarevič, Torelli's theorem for algebraic surfaces of type $K3$, Izv. Akad. Nauk SSSR Ser. Mat., 35 (1971), 530–572, Reprinted in I. R. Shafarevich, Collected Mathematical Papers, Springer-Verlag, Berlin, 1989, 516–557.
  • M. Roczen, Recognition of simple singularities in positive characteristic, Math. Z., 210 (1992), 641–653.
  • Matthias Schütt, Fields of definition of singular $K3$ surfaces, Commun. Number Theory Phys., 1 (2007), 307–321.
  • I. Shimada, Fundamental groups of open algebraic varieties, Topology, 34 (1995), 509–531.
  • I. Shimada, A note on Zariski pairs, Compositio Math., 104 (1996), 125–133.
  • I. Shimada, Picard-Lefschetz theory for the universal coverings of complements to affine hypersurfaces, Publ. Res. Inst. Math. Sci., 32 (1996), 835–927.
  • I. Shimada, On the Zariski-van Kampen theorem. Canad. J. Math., 55 (2003), 133–156.
  • I. Shimada, On arithmetic Zariski pairs in degree 6, Adv. Geom., 8(2) (2008), 205–225.
  • I. Shimada, Transcendental lattices and supersingular reduction lattices of a singular $K3$ surface, Trans. Amer. Math. Soc., 361 (2) (2009), 909–949.
  • I. Shimada, Non-homeomorphic conjugate complex varieties, 2007. preprint, arXiv:math/0701115.
  • T. Shioda and H. Inose, On singular $K3$ surfaces, in, Complex analysis and algebraic geometry, 119–136. Iwanami Shoten, Tokyo, 1977.
  • T. Shioda, $K3$ surfaces and sphere packings, J. Math. Soc. Japan, 60(4) (2008), 1083–1105.
  • Jin-Gen Yang, Sextic curves with simple singularities, Tohoku Math. J., 48 (1996), 203–227.
  • O. Zariski, On the Problem of Existence of Algebraic Functions of Two Variables Possessing a Given Branch Curve, Amer. J. Math., 51 (1929), 305–328.
  • O. Zariski, The Topological Discriminant Group of a Riemann Surface of Genus $p$, Amer. J. Math., 59 (1937), 335–358.