Tokyo Journal of Mathematics

Mean-Variance Hedging for Discontinuous Semimartingales

Takuji ARAI

Full-text: Open access


Mean-variance hedging is well-known as one of hedging methods for incomplete markets. Our end is leading to mean-variance hedging strategy for incomplete market models whose asset price process is given by a discontinuous semimartingale and whose mean-variance trade-off process is not deterministic. In this paper, on account, we focus on this problem under the following assumptions: (1) the local martingale part of the stock price process is a process with independent increments; (2) a certain condition restricting the number and the size of jumps of the asset price process is satisfied; (3) the mean-variance trade-off process is uniformly bounded; (4) the minimal martingale measure coincides with the variance-optimal martingale measure.

Article information

Tokyo J. Math., Volume 25, Number 2 (2002), 435-452.

First available in Project Euclid: 5 June 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


ARAI, Takuji. Mean-Variance Hedging for Discontinuous Semimartingales. Tokyo J. Math. 25 (2002), no. 2, 435--452. doi:10.3836/tjm/1244208863.

Export citation


  • T. Arai, On the equivalent martingale measures for Poisson jump type models, Keio University Research Report (2001), KSTS/RR-01/004.
  • D. Duffie and H. R. Richardson, Mean-variance hedging in continuous time, Ann. Appl. Probab., 1 (1991), 1–15.
  • F. Delbaen, P. Monat, W. Schachermayer, M. Schweizer and C. Stricker, Weighted norm inequalities and hedging in incomplete markets, Fin. Stoch., 1 (1997), 181–227.
  • F. Delbaen and W. Schachermayer, The variance-optimal martingale measure for continuous processes, Bernoulli, 2 (1996), 81–105.
  • C. Dellacherie and P. A. Meyer, Probabilities and Potential B., North-Holland (1982).
  • H. Föllmer and M. Schweizer, Hedging of contingent claims under incomplete information, Applied Stochastic Analysis (eds. M. H. A. Davis and R. J. Elliott), Stochastic Monographs 5 (1991), Gordon and Breach, 389–414.
  • C. Gouriéroux, J. P. Laurent and H. Pham, Mean-variance hedging and numéraire, Math. Finance, 8 (1998), 179–200.
  • P. Grandits and L. Krawczyk, Closedness of some spaces of stochastic integrals, Séminaire de Probabilités, LNM 1686 (1998), Springer, 73–85.
  • F. Hubalek and L. Krawczyk, Simple explicit formulae for variance-optimal hedging for processes with stationary independent increments, Preprint, (1999).
  • J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Springer (1987).
  • D. Lepingle and J. Mémin, Sur l'intégrabilité uniforme des martingales exponentielles, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 42 (1978), 175–203.
  • P. Monat and C. Stricker, Föllmer-Schweizer decomposition and mean-variance hedging for general claims, Ann. Prob., 23 (1995), 605–628.
  • H. Pham, On quadratic hedging in continuous time, Math. Meth. Oper. Res., 51 (2000), 315–339.
  • H. Pham, T. Rheinländer and M. Schweizer, Mean-variance hedging for continuous processes: new proofs and examples, Fin. Stoch., 2 (1998), 173–198.
  • P. Protter, $\mathcal H^p$ stability of solutions of stochastic differential equations, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 44 (1978), 337–352.
  • P. Protter, Stochastic Integration and Differential Equations. A new approach, Springer (1990).
  • T. Rheinländer and M. Schweizer, On $L^2$-projections on a space of stochastic integrals, Ann. Probab., 25 (1997), 1810–1831.
  • M. Schweizer, Mean-variance hedging for general claims, Ann. Appl. Probab., 2 (1992), 171–179.
  • M. Schweizer, Approximating random variables by stochastic integrals, and applications in financial mathematics, Habilitationsscrift Univ. (1993).
  • M. Schweizer, Approximating random variables by stochastic integrals, Ann. Prob., 22, (1994), 1536–1575.
  • M. Schweizer, On the minimal martingale measure and the Föllmer-Schweizer decomposition, Stoch. Anal. Appl., 13 (1995a), 573–599.
  • M. Schweizer, Variance-optimal hedging in discrete time, Math. Oper. Res., 20 (1995b), 1–20.
  • M. Schweizer, A guided tour through quadratic hedging approaches, Option Pricing, Interest Rates and Risk Management (eds. E. Jouini, J. Cvitanic, M. Musiela), Cambridge University Press (2001), 538–574.
  • A. Wiese, Hedging stochastischer Verpflichtungen in zeitstigen Modellen, Karlsruher Reihe (1998).