Tokyo Journal of Mathematics

Another Natural Lift of a Kähler Submanifold of a Quaternionic Kähler Manifold to the Twistor Space

Norio EJIRI and Kazumi TSUKADA

Full-text: Open access

Abstract

We study a Kähler submanifold $M$ of a quaternionic Kähler manifold $\tilde {M}$. For such submanifold $M$ we construct a totally real and minimal submanifold ${\cal Z}$ in the twistor space $\tilde{\cal Z}$ of $\tilde {M}$.

Article information

Source
Tokyo J. Math., Volume 28, Number 1 (2005), 71-78.

Dates
First available in Project Euclid: 5 June 2009

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1244208280

Digital Object Identifier
doi:10.3836/tjm/1244208280

Mathematical Reviews number (MathSciNet)
MR2149624

Zentralblatt MATH identifier
1080.53041

Subjects
Primary: 53C26: Hyper-Kähler and quaternionic Kähler geometry, "special" geometry
Secondary: 53B25: Local submanifolds [See also 53C40]

Citation

EJIRI, Norio; TSUKADA, Kazumi. Another Natural Lift of a Kähler Submanifold of a Quaternionic Kähler Manifold to the Twistor Space. Tokyo J. Math. 28 (2005), no. 1, 71--78. doi:10.3836/tjm/1244208280. https://projecteuclid.org/euclid.tjm/1244208280


Export citation

References

  • D. V. Alekseevsky and S. Marchiafava, Hermitian and Kähler submanifolds of a quaternionic Kähler manifold, Osaka J. Math. 38 (2001), 869–904.
  • D. V. Alekseevsky and S. Marchiafava, A twistor construction of (minimal) Kähler submanifolds of a quaternionic Kähler manifold, preprint.
  • A. L. Besse, Einstein manifolds, Springer (1987).
  • S. Funabashi, Totally complex submanifolds of a quaternionic Kaehlerian manifold, Kodai Math. J. 2 (1979), 314–336.
  • S. Ishihara, Quaternion Kaehler manifolds, J. Differential Geom. 9 (1974), 483–500.
  • B.O' Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469.
  • S. Salamon, Quaternionic Kähler manifolds, Invent. Math. 67 (1982), 143–171.
  • M. Takeuchi, Totally complex submanifolds of quaternionic symmetric spaces, Japan J. Math. 12 (1986), 161–189.
  • K. Tsukada, Parallel submanifolds in a quaternion projective space, Osaka J. Math. 22 (1985), 187–241.