Tokyo Journal of Mathematics

On Homogeneous Almost Kähler Einstein Manifolds of Negative Curvature

Wakako OBATA

Full-text: Open access

Abstract

A homogeneous almost Kähler manifold $M$ of negative curvature can be identified with a solvable Lie group $G$ with a left invariant metric $g$ and a left invariant almost complex structure $J$. We prove that if $g$ is an Einstein metric and $G$ is of Iwasawa type, then $J$ is integrable so that $M$ is Kähler, and hence is holomorphically isometric to a complex hyperbolic space of the same dimension.

Article information

Source
Tokyo J. Math., Volume 28, Number 2 (2005), 407-414.

Dates
First available in Project Euclid: 5 June 2009

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1244208198

Digital Object Identifier
doi:10.3836/tjm/1244208198

Mathematical Reviews number (MathSciNet)
MR2191057

Zentralblatt MATH identifier
1094.53043

Subjects
Primary: 53C30: Homogeneous manifolds [See also 14M15, 14M17, 32M10, 57T15]
Secondary: 53C15: General geometric structures on manifolds (almost complex, almost product structures, etc.) 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.)

Citation

OBATA, Wakako. On Homogeneous Almost Kähler Einstein Manifolds of Negative Curvature. Tokyo J. Math. 28 (2005), no. 2, 407--414. doi:10.3836/tjm/1244208198. https://projecteuclid.org/euclid.tjm/1244208198


Export citation

References

  • L. A. Cordero, M. Fernandez and M. De Leon, Example of compact non-Kähler almost Kähler manifolds, Proc. Amer. Math. Soc. 95 (1985), 280–286.
  • S. Goldberg, Integrability of almost Kaehler manifolds, Proc. Amer. Math. Soc. 21 (1969), 96–100.
  • J. Heber, Noncompact homogeneous Einstein spaces, Invent. Math. 211 (1998), 279–352.
  • E. Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974), 23–34.
  • S. Kobayashi, Homogeneous Riemannian manifolds of negative curvature, Tôhoku Math. J. 14 (1962), 413–415.