Tokyo Journal of Mathematics

Duality of Weights, Mirror Symmetry and Arnold's Strange Duality


Full-text: Open access


A duality of weight systems which corresponds to Batyrev's toric mirror symmetry is given. It is shown that Arnold's strange duality for exceptional unimodal singularities reduces to this duality.

Article information

Tokyo J. Math., Volume 31, Number 1 (2008), 225-251.

First available in Project Euclid: 27 August 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


KOBAYASHI, Masanori. Duality of Weights, Mirror Symmetry and Arnold's Strange Duality. Tokyo J. Math. 31 (2008), no. 1, 225--251. doi:10.3836/tjm/1219844834.

Export citation


  • V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps, Volume I, Monographs in Mathematics 82, Birkhäuser, 1985.
  • P. S. Aspinwall, B. R. Greene and D. R. Morrison, The monomial-divisor mirror map, Internat. Math. Research Notices, 72 (1993), 319–337.
  • P. S. Aspinwall and D. R. Morrison, String theory on $K3$ surfaces, Mirror symmetry II, AMS/IP Stud. Adv. Math. 1, AMS, 1997, 703–716.
  • V. V. Batyrev, Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori, Duke Math. J., 69 (1993), 349–409.
  • V. V. Batyrev, Dual polyhedra and the mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom., 3 (1994), 493–535.
  • K. Hulek, W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Second Enlarged Edition, Ergebnisse der Math. (3) Bd.4, Springer, 2004.
  • P. Berglund and S. Katz, Mirror symmetry constructions: a review, Mirror symmetry II, AMS/IP Stud. Adv. Math. 1, AMS, 1997, 87–113.
  • C. Borcea, $K3$ surfaces with involution and mirror pairs of Calabi-Yau manifolds, Mirror symmetry II, AMS/IP Stud. Adv. Math. 1, AMS, 1997, 717–743.
  • P. Candelas, X. de la Ossa and S. Katz, Mirror symmetry for Calabi-Yau hypersurfaces in weighted $\P_4$ and extensions of Landau Ginzburg theory, Nuclear Phys., B450 (1995), 267–290.
  • P. Candelas, M. Lynker and R. Schimmrigk, Calabi-Yau manifolds in weighted $\mathbb{P}_4$, Nucl. Phys., B341 (1990), 383–402.
  • V. I. Danilov, The geometry of toric varieties, Russian Math. Surveys, 33 (1978), 97–154.
  • V. I. Danilov and A. G. Khovanski, Newton polyhedra and an algorithm for computing Hodge-Deligne numbers, Math. USSR Izv., 29 (1987), 279–298.
  • I. V. Dolgachev, Weighted projective spaces, Group Actions and Vector Fields, Lect. Notes Math. 956, Springer, 1982, 34–71.
  • I. V. Dolgachev, Mirror symmetry for lattice polarized $K3$-surfaces, J. Math. Sci., 81 (1996), 2599–2630.
  • I. V. Dolgachev and V. V. Nikulin, Arnold's exceptional singularities and K-3 surfaces, The all-union topological conference in Minsk, Minsk, 1977.
  • W. Ebeling, Quadratische Formen une Monodromiegruppen von Singularitäten, Math. Ann., 255 (1981), 463–498.
  • W. Ebeling, Strange duality and polar duality, J. London Math. Soc. (2), 61 (2000), 823–834.
  • W. Ebeling, Mirror symmetry, Kobayashi's duality, and Saito's duality, Kodai Math. J., 29 (2006), 319–336.
  • A. R. Fletcher, Working with weighted complete intersections, MPI/89-35; Univ. of Warwick Thesis, (1989).
  • K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil and E. Zaslow, Mirror symmetry, Clay Mathematics Monographs 1, AMS and Clay Mathematics Institute, 2003.
  • M. Kobayashi, Mirror symmetry and strange duality, preprint, (1994).
  • T. Higuchi, E. Yoshinaga and K. Watanabe, Tahensu-Fukuso-Kaiseki Nyumon (in Japanese), Sugaku Library 51, Morikita Shuppan, 1980.
  • B. H. Lian and S.-T. Yau, Arithmetic properties of mirror map and quantum coupling, Comm. Math. Phys., 176 (1996), 163–191.
  • E. J. N. Looijenga and J. Wahl, Quadratic functions and smoothing surface singularities, Topology, 25 (1986), 261–291.
  • S. Mori, On a generalization of complete intersections, J. Math. Kyoto Univ., 15 (1975), 619–646.
  • D. R. Morrison, Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians, J. Amer. Math. Soc., 6 (1993), 223–247.
  • V. V. Nikulin, Finite automorphism group of Kähler K3 surfaces, Trans. Moscow Math. Soc., 38 (1980), 71–135.
  • T. Oda, Convex Bodies and Algebraic Geometry: an Introduction to the Theory of Toric Varieties, Ergebnisse der Math. (3) Bd.15, Springer, 1988.
  • P. Orlik and P. Wagreich, Isolated singularities of algebraic surfaces with $\mathbf{C}^*$-action, Ann. of Math., 93 (1971), 205–228.
  • H. Pinkham, Singularités exceptionelles, la dualité étrange d'Arnold et les surfaces K-3, C. R. Acad. Sc. Paris, 284 (A) (1977), 615–618.
  • M. Reid, Canonical 3-folds, Journées de Géometrie Algébrique d'Angers, Juillet, 1979/Algebraic Geometry, Angers, 1979, Sijthoff and Nordhoff, 1980, 273–310.
  • S. Roan, Mirror symmetry and Arnold's duality, J. Math. Sci. (New York), 94 (1999), 1237–1253.
  • Y. Ruan and G. Tian, Mathematical theory of quantum cohomology, J. Differential Geom., 42 (1995), 259–367.
  • K. Saito, Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math., 14 (1971), 123–142.
  • K. Saito, Regular system of weights and their associated singularities, Complex Analytic Singularities, eds. T. Suwa and P. Wagreich, Adv. Stud. Pure Math. 8, Kinokuniya, North Holland, 1986, 479–526.
  • K. Saito, Algebraic surfaces associated to regular systems of weights, Algebraic Geometry and Commutative Algebra: in Honor of Masayoshi Nagata, Kinokuniya, North-Holland, 1987, 517–614.
  • K. Saito, Duality for regular systems of weights: a précis, Topological field theory, primitive forms and related topics (Kyoto, 1996), Progr. Math. 160, Birkhäuser, 1998, 379–426.
  • R. P. Stanley, Combinatorics and Commutative Algebra, Progr. Math. 41, Birkhäuser, 1983.
  • C. Voisin, Miroirs et involutions sur les surfaces K3, Journées de Géométrie Algébrique d'Orsay (Juillet 1992), Astérisque 218, 1993, 273–322.
  • 37. S.-T. Yau (ed.), Essays on Mirror Manifolds, International Press, 1992,