Tokyo Journal of Mathematics

The Intersection of Fixed Point Subgroups by Involutive Automorphisms of Compact Exceptional Lie Groups

Toshikazu MIYASHITA

Full-text: Open access

Abstract

In this paper we treat the intersection of fixed point subgroups by the involutive automorphisms of exceptional Lie group $G = F_4, E_6, E_7$. We shall find involutive automorphisms of $G$ such that the connected component of the intersection of those fixed point subgroups coincides with the maximal torus of $G$.

Article information

Source
Tokyo J. Math., Volume 30, Number 2 (2007), 455-463.

Dates
First available in Project Euclid: 4 February 2008

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1202136688

Digital Object Identifier
doi:10.3836/tjm/1202136688

Mathematical Reviews number (MathSciNet)
MR2376521

Zentralblatt MATH identifier
1151.22017

Citation

MIYASHITA, Toshikazu. The Intersection of Fixed Point Subgroups by Involutive Automorphisms of Compact Exceptional Lie Groups. Tokyo J. Math. 30 (2007), no. 2, 455--463. doi:10.3836/tjm/1202136688. https://projecteuclid.org/euclid.tjm/1202136688


Export citation

References

  • M. Berger, Les espaces symétriques non compacts, Ann. Sci. Ecole Norm. Sup., 74 (1957), 85–177.
  • T. Miyashita, Fixed points subgroups $G^{\sigma, \gamma}$ by two involutive automorphisms $\sigma, \gamma$ of compact exceptional Lie groups $G = F_4, E_6$ and $E_7$, Tsukuba J. Math., 27 (2003), 199–215.
  • T. Miyashita and I. Yokota, 2-graded decompositions of exceptional Lie algebra $\mathfrak{g}$ and group realizations of $\mathfrak{g}_{ev}, \mathfrak{g}_0$, Part III, $G = E_8$, Japanese J. Math., 26 (2000), 31–51.
  • T. Miyashita and I. Yokota, Fixed points subgroups $G^{\sigma,\sigma'}$ by two involutive automorphisms $\sigma, \sigma'$ of compact exceptional Lie groups $G = F_4, E_6$ and $E_7$, Math. J. Toyama Univ., 24 (2001), 135–149.
  • T. Miyashita and I. Yokota, Fixed points subgroups $G^{\gamma,\gamma'}$ by two involutive automorphisms $\gamma, \gamma'$ of compact exceptional Lie groups $G = G_2, F_4, E_6$ and $E_7$, Yokohama Math. J., 53 (2006), 9–38.
  • T. Miyashita and I. Yokota, 3-graded decompositions of exceptional Lie algebra $\mathfrak{g}$ and group realizations of $\mathfrak{g}_{ev}, \mathfrak{g}_0$ and $\mathfrak{g}_{ed}$, Part II, $G =E_7$, Part II, Case 1, J. Math. Kyoto Univ., 46-2 (2006), 383–413.
  • T. Miyashita and I. Yokota, 3-graded decompositions of exceptional Lie algebra $\mathfrak{g}$ and group realizations of $\mathfrak{g}_{ev}, \mathfrak{g}_0$ and $\mathfrak{g}_{ed}$, Part II, $G =E_7$, Part II, Case 2, 3 and 4, J. Math. Kyoto Univ., 46-4 (2006), 805–832.
  • I. Yokota, Realization of involutive automorphisms $\sigma$ and $G^\sigma$ of exceptional linear Lie groups $G$, Part I, $G = G_2, F_4$, and $E_6$, Tsukuba J. Math., 4 (1990), 185–223.
  • I. Yokota, Realization of involutive automorphisms $\sigma$ and $G^\sigma$ of exceptional linear Lie groups $G$, Part II, $G = E_7$, Tsukuba J. Math., 4 (1990), 378–404.
  • I. Yokota, 2-graded decompositions of exceptional Lie algebra $\mathfrak{g}$ and group realizations of $\mathfrak{g}_{\it ev}, \mathfrak{g}_0$, Part I, $G = G_2, F_4, E_6$, Japanese J. Math., 24 (1998), 257–296.
  • I. Yokota, 2-graded decompositions of exceptional Lie algebras $\mathfrak{g}$ and group realizations of $\mathfrak{g}_{\it ev}, \mathfrak{g}_0$, Part II, $G = E_7$, Japanese J. Math., 25 (1999), 155–179.
  • I. Yokota, 3-graded decompositions of exceptional Lie algebra $\mathfrak{g}$ and group realizations of $\mathfrak{g}_{ev}, \mathfrak{g}_0$ and $\mathfrak{g}_{ed}$, Part II, $G = G_2, F_4, E_6$, Part I, J. Math. Kyoto Univ., 41-3 (2001), 449–474.