Tokyo Journal of Mathematics

The Non-vanishing Cohomology of Orlik-Solomon Algebras

Yukihito KAWAHARA

Full-text: Open access

Abstract

The cohomology of the complement of hyperplanes with coefficients in the rank one local system associated to a generic weight vanishes except in the highest dimension. In this paper, we construct matroids or arrangements admitting weights for which the Orlik-Solomon algebra has non-vanishing cohomology, using decomposable relations arising from Latin hypercubes.

Article information

Source
Tokyo J. Math., Volume 30, Number 1 (2007), 223-238.

Dates
First available in Project Euclid: 20 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1184963658

Digital Object Identifier
doi:10.3836/tjm/1184963658

Mathematical Reviews number (MathSciNet)
MR2328065

Zentralblatt MATH identifier
1132.52027

Subjects
Primary: 52C35: Arrangements of points, flats, hyperplanes [See also 32S22]
Secondary: 32S22: Relations with arrangements of hyperplanes [See also 52C35] 14F99: None of the above, but in this section

Citation

KAWAHARA, Yukihito. The Non-vanishing Cohomology of Orlik-Solomon Algebras. Tokyo J. Math. 30 (2007), no. 1, 223--238. doi:10.3836/tjm/1184963658. https://projecteuclid.org/euclid.tjm/1184963658


Export citation

References

  • D. Arapura, Geometry of cohomology support loci for local systems I, J. Alg. Geom. 6 (1997), 563–597.
  • K. Aomoto and M. Kita, Hypergeometric functions (in Japanese), Tokyo Springer, 1994.
  • D. Cohen and A. Suciu, Characteristic varieties of arrangements, Math. Proc. Cambridge Philos. Soc. 127 (1999), 33–54.
  • C. J. Colbourn and J. H. Dinitz (editor), The CRC handbook of combinatorial designs, CRC Press Series on Discrete Mathematics and its Applications. CRC Press, Boca Raton, FL, 1996.
  • H. Esnault, V. Schechtman and E. Viehweg, Cohomology of local systems on the complement of hyperplanes, Invent. Math. 109 (1992), 557–561; Erratum 112 (1993), 447.
  • M. Falk, Arrangements and Cohomology, Annals of Comb. 1 (1997), 135–157.
  • Y. Kawahara, On matroids and Orlik-Solomon algebras, Annals of Combinatorics 8 (2004), 63–80.
  • A. Libgober, Characteristic varieties of algebraic curves, Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001), 215–254, NATO Sci. Ser. II Math. Phys. Chem. 36, Kluwer Acad. Publ., Dordrecht (2001).
  • A. Libgober and S. Yuzvinsky, Cohomology of the Orlik-Solomon algebras and local systems, Compositio Math. 121 (2000), no. 3, 337–361.
  • P. Orlik and H. Terao, Arrangements of Hyperplanes, Grundlehren der mathematischen Wissenschaften 300, Springer-Verlag, 1992.
  • P. Orlik and H. Terao, Arrangements and Hypergeometric integrals, MSJ, Mem. vol. 9, Math. Soc. Japan (2001).
  • J. Oxley, Matroid Theory, Cambridge Univ. Press, Cambridge, 1993.
  • V. V. Prasolov, Essays on numbers and figures, Translated from the 1997 Russian original by A. B. Sossinski. Mathematical World, 16. American Mathematical Society, Providence, RI, 2000.
  • V. Schechtman, H. Terao and A. Varchenko, Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors, J. Pure Appl. Algebra 100 (1995), 93–102.
  • S. Yuzvinsky, Cohomology of the Brieskorn-Orlik-Solomon algebras, Comm. Algebra 23 (1995), 5339–5354.
  • S. Yuzvinsky, Orlik-Solomon algebras in algebra and topology, (Russian) Uspekhi Mat. Nauk 56 (2001), no. 2 (338), 87–166; translation in Russian Math. Surveys 56 (2001), no. 2, 293–364.
  • S. Yuzvinsky, Realization of finite abelian groups by nets in $\mathbb{P}^2$, Compos. Math. 140 (2004), no. 6, 1614–1624.