Tbilisi Mathematical Journal

Weighted sharing and uniqueness for the shifts of meromorphic functions

Chao Meng and Gang Liu

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this paper, we deal with the uniqueness problem for $q$-shifts of meromorphic functions. The results obtained in this paper are the $q$-shift analogues of theorems given by Yang and Zhang [Non-existence of meromorphic solution of a Fermat type functional equation, Aequationes Math. 76(2008), 140-150], Chen, Chen and Li [Uniqueness of difference operators of meromorphic functions, J. Ineq. Appl. 2012(2012), Art 48].

Note

This work was supported by The Research Project of Education Department of Liaoning Province (L201612) and The Startup Foundation for Doctors of Shenyang Aerospace University (No. 16YB14).

Article information

Source
Tbilisi Math. J., Volume 12, Issue 2 (2019), 17-27.

Dates
Received: 19 May 2018
Accepted: 25 February 2019
First available in Project Euclid: 21 June 2019

Permanent link to this document
https://projecteuclid.org/euclid.tbilisi/1561082564

Digital Object Identifier
doi:10.32513/tbilisi/1561082564

Mathematical Reviews number (MathSciNet)
MR3973256

Subjects
Primary: 30D35: Distribution of values, Nevanlinna theory
Secondary: 39A05: General theory 39B32: Equations for complex functions [See also 30D05]

Keywords
weighted sharing meromorphic function $q$-shift uniqueness

Citation

Meng, Chao; Liu, Gang. Weighted sharing and uniqueness for the shifts of meromorphic functions. Tbilisi Math. J. 12 (2019), no. 2, 17--27. doi:10.32513/tbilisi/1561082564. https://projecteuclid.org/euclid.tbilisi/1561082564


Export citation

References

  • A. Banerjee, Uniqueness of meromorphic functions that share two sets, Southeast Asian Bull. Math. 31(2007), 7-17.
  • A. Banerjee and S. Bhattacharyya, On the uniqueness of meromorphic functions and its difference operator sharing values or sets, Rend. Circ. Mat. Palermo. II. 67(2018), 75-85.
  • W. Bergweiler and J. K. Langley, Zeros of difference of meromorphic functions, Math. Proc. Camb. Philos. Soc. 142(2007), 133-147.
  • R. Brück, On entire functions which share one value CM with their first derivative, Results Math. 30(1996), 21-24.
  • B. Q. Chen and Z. X. Chen, Entire functions sharing sets of small functions with their difference operators or shifts, Math. Slovaca. 63(2013), 1233-1246.
  • B. Q. Chen, Z. X. Chen and S. Li, Uniqueness of difference operators of meromorphic functions, J. Ineq. Appl. 2012(2012), Art 48.
  • Z. X. Chen and K. H. Shon, On conjecture of R.Bruck concering the entire function sharing one value CM with its derivatives, Taiwanese J. Math. 8(2004), 235-244.
  • Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic $f(z+\eta)$ and difference equations in complex plane, Ramanujan J. 16(2008), 105-129.
  • G. G. Gundersen, Meromorphic functions that share finite values with their derivatives, J. Math. Anal. Appl. 75(1980), 441-446. Correction, 86(1982), 307.
  • G. G. Gundersen and L. Z. Yang, Entire functions that share one vlaue with one or two of their derivatives, J. Math. Anal. Appl. 223(1998), 88-95.
  • R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math. 31(2006), 463-478.
  • W. K. Hayman, Meromorphic Functions, Clarendon, Oxford, 1964.
  • J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo and J. L. Zhang, Value sharing results for shifts of meromorphic function and fufficient conditions for periodicity, J. Math. Anal. Appl. 355(2009), 352-363.
  • I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J. 161(2001), 193-206.
  • K. Liu and X. G. Qi, Meromorphic solutions of $q$-shift difference euqations, Ann. Polon. Math. 101(2011), 215-225.
  • X. G. Qi, L. Z. Yang and Y. Liu, Nevanlinna theory for the $f(qz+c)$ and its applications, Acta Math. Sci. 33A(2013), 819-828.
  • H. Y. Xu, K. Liu and T. B. Cao, Uniqueness and value distribution for $q$-shifts of meromorphic functions, Math. Commun. 20(2015), 97-112.
  • C. C. Yang, On deficiencies of differential polynomials, Math. Z. 125(1972), 107-112.
  • L. Yang, Value distribution theory, Springer-Verlag, Berlin, 1993.
  • L. Z. Yang, Entire functions that share finite values with their derivatives, Bull. Austral. Math. Soc. 41(1990), 337-342.
  • L. Z. Yang, Solution of a differential equation and its applications, Kodai Math. J. 22(1999), 458-464.
  • L. Z. Yang and J. L. Zhang, Non-existence of meromorphic solution of a Fermat type functional equation, Aequationes Math. 76(2008), 140-150.
  • J. L. Zhang, Value distribution and shared sets of differences of meromorphic functions, J. Math. Anal. Appl. 367(2010), 401-408.