Statistics Surveys

Statistical inference for disordered sphere packings

Jeffrey Picka

Full-text: Open access

Abstract

This paper gives an overview of statistical inference for disordered sphere packing processes. These processes are used extensively in physics and engineering in order to represent the internal structure of composite materials, packed bed reactors, and powders at rest, and are used as initial arrangements of grains in the study of avalanches and other problems involving powders in motion. Packing processes are spatial processes which are neither stationary nor ergodic. Classical spatial statistical models and procedures cannot be applied to these processes, but alternative models and procedures can be developed based on ideas from statistical physics.

Most of the development of models and statistics for sphere packings has been undertaken by scientists and engineers. This review summarizes their results from an inferential perspective.

Article information

Source
Statist. Surv., Volume 6 (2012), 74-112.

Dates
First available in Project Euclid: 19 July 2012

Permanent link to this document
https://projecteuclid.org/euclid.ssu/1342701400

Digital Object Identifier
doi:10.1214/09-SS058

Mathematical Reviews number (MathSciNet)
MR3011072

Zentralblatt MATH identifier
1302.62205

Keywords
Sphere packing random set point process tessellation granular materials

Citation

Picka, Jeffrey. Statistical inference for disordered sphere packings. Statist. Surv. 6 (2012), 74--112. doi:10.1214/09-SS058. https://projecteuclid.org/euclid.ssu/1342701400


Export citation

References

  • [1] Rycroft, C.H. Voro++: A three-dimensional Voronoi cell library in C++. Chaos, 19:041111, 2009.
  • [2] Rogers, C.A. Packing and Covering. Cambridge, 1964.
  • [3] Gruber, P.M. and Lekkerkerker, C.G. Geometry of Numbers. North-Holland, 1987.
  • [4] Zong, C. Sphere Packings. Springer, New York, 1999.
  • [5] Conway, J.H. and Sloane, N.J.A. Sphere Packings, Lattices, and Groups. Springer, 3rd edition, 1999.
  • [6] Stephenson, K. Introduction to Circle Packing. Cambridge, 2005.
  • [7] Bernal, J.D. A geometric approach to the structure of liquids. Nature, 183:141–147, 1959.
  • [8] Bernal, J.D. The structure of liquids. Proc. R. Soc. A, 280(1382):299–322, 1964.
  • [9] Bernal, J.D. Co-ordination of randomly packed spheres. Nature, 188:910–911, December 10 1960.
  • [10] Scott, G.D. Packing of spheres. Nature, 188:908–909, December 10 1960.
  • [11] Aste, T. and Weaire, D. The Pursuit of Perfect Packing. Institute of Physics, 2000.
  • [12] Jaeger, H.M., Nagel, S.R., and Behringer, R.P. Granular solids, liquids, and gases. Rev. Mod. Phys., 68:1259, 1996.
  • [13] Degennes, P.G. Granular matter: A tentative view. Rev. Mod. Phys., 68:1259–1273, 1996.
  • [14] Ball, P. The Self-Made Tapestry. Oxford, 2001.
  • [15] ASM Handbook Vol. 7: Powder Metal technologies and Applications. ASM International, 1998.
  • [16] Onoda, G.Y. and Liniger, E.G. Random loose packings of spheres and dilatancy onset. Phys. Rev. Lett., 64(22):2727–2730, 1990.
  • [17] Mindess, S. and Young, J.F. Concrete. Prentice-Hall, 1981.
  • [18] Shiu, W., Donzé, F.V., and Daudeville, L. Influence of the reinforcement on penetration and perforation of concrete targets: A discrete element analysis. Engineering Computation, 26(1):29–45, 2009.
  • [19] Chu, C.F. and Ng, K.M. Flow in packed tubes with a small tube to particle diameter ratio. AICHE J., 35:148–158, 1989.
  • [20] Matheron, G. Random Sets and Integral Geometry. Wiley, New York, 1975.
  • [21] Molchanov, I. Theory of Random Sets. Springer, 2005.
  • [22] Schaer, J. The densest packing of five spheres in a cube. Canad. Math. Bull., 9:271–274, 1966.
  • [23] Locatelli, M. and Raber, U. Packing circles in a square: a deterministic global optimization approach. Disc. App. Math., 122(1-3):139–166, 2002.
  • [24] Graham, R.L. and Lubachevsky, B.D. Dense packings of equal discs in an equilateral triangle. Electron. J. Combin., 2:A1, 1995.
  • [25] Markót, M.C. Optimal packing of 28 equal circles in a unit square - the first reliable solution. Numer. Algorithms, 37:253–261, 2004.
  • [26] Finney, J.L. Random packings and the structure of simple liquids I. The geometry of random close packing. Proc. R. Soc. A, 319:479–473, 1970.
  • [27] Zavaliangos, A. A numerical study of the development of tensile principal stresses during die compaction. Part. Sci. Tech., 21(2):105–115, 2003.
  • [28] Procopio, A.T. and Zavaliangos, A. Simulation of multi-axial compaction of granular media from loose to high relative densities. J. Mech. Phys. Solids, 53:1523–1551, 2005.
  • [29] Ruelle, D. Statistical Mechanics: Rigorous Results. Benjamin, 1974.
  • [30] Møller, J. and Waagepetersen, R.P. Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall, 2004.
  • [31] Gao, G.-J., Blawzdziewicz, J., O’Hern, C.S., and Shattuck, M. Experimental demonstration of nonuniform frequency distributions of granular packings. Phys. Rev. E, 80:061304, 2009.
  • [32] Ikegami, T. Contacts and coordination numbers in a compact of polyhedral particles. Journal of the American Ceramic Society, 79:148–152, 1996.
  • [33] Bernal, J.D., Cherry, I.A., Finney, J.L., and Knight, K.R. An optical machine for measuring sphere coordinates in random packings. J. Phys. E, 3(5):388–390, 1970.
  • [34] Brujić, J., Edwards, S.F., Hopkinson, I., and Makse, H.A. Measuring the distribution of interdroplet forces in a compressed emulsion system. Physica A, 327(3-4):210–212, 2003.
  • [35] Quickenden, T.I. and Tan, G.K. Random packing in two dimensions and the structure of the monolayers. J. Colloid Interf. Sci., 48:382–392, 1974.
  • [36] Aste, T., Saadatfar, M., and Senden, T.J. Geometrical structure of disordered sphere packings. Physical Review E, 71(6):061302, 2005.
  • [37] Aste, T. Variations around disordered close packing. J.Phys. Condens. Matter, 17:S2361–S2390, 2005.
  • [38] Richard, P., Philippe, P., Barbe, F., Bourlès, S., Thibault, X., and Bideau, D. Analysis by X-ray microtomography of a granular packing undergoing compression. Phys. Rev. E, 68(2):020301, 2003.
  • [39] Seidler, G.T., Martinez, G., Seeley, L.H., Kim, K.H., Behne, E.A., Zaranek, S., Chapman, B.D., Heald, S.M., and Brewe, D.L. Granule-by-granule reconstruction of a sandpile from X-ray microtomography data. Phys. Rev. E, 62(6):8175–8181, 2000.
  • [40] Sederman, A.J., Alexander, P., and Gladden, L.F. Structure of packed beds probed by magnetic resonance imaging. Powder Tech., 117(3):255–269, 2001.
  • [41] Kohonen, M.M., Geromichalos, D., Scheel, M., Schier, C., and Herminghaus, S. On capillary bridges in wet granular materials. Physica A, 339:7–15, 2004.
  • [42] Toiya, M., Hettinga, J., and Losert, W. 3d imaging of particle motion during penetrometer testing. Granular Matter, 9(5):323–329, 2007.
  • [43] Torquato, S. Is random close packing of spheres well-defined? Phys. Rev. Lett., 84(10):2064–2067, 2000.
  • [44] Grebenkov, D.S., Ciamarra, M.P., Nicodemi, M., and Coniglio, A. Flow, ordering, and jamming of sheared granular suspensions. Phys. Rev. Lett., 100(7):078001, 2008.
  • [45] Pouliquen, O., Nicolas, M., and Weidman, P.D. Crystallization of non-brownian spheres under horizontal shaking. Phys. Rev. Lett., 79(19):3640–3643, 1997.
  • [46] Cassells, J.W.S. An Introduction to the Geometry of Numbers. Springer, Berlin, 1959.
  • [47] Hales, T.C. The sphere packing problem. J. Comput. Appl. Math., 44:41–76, 1992.
  • [48] Yang, A., Miller, C.T., and Turcoliver, L.D. Simulation of correlated and uncorrelated packing of random size spheres. Phys. Rev. E, 53(2):1516–1524, 1996.
  • [49] Rosato, A., Strandburg, K.J., Prinz, F., and Swendsen, R.H. Why Brazil nuts are on top: Size segregation of particulate matter by shaking. Phys. Rev. Lett., 58(10):1038–1040, 1987.
  • [50] Tobochnik, J. and Chapin, P.M. Monte Carlo simulation of hard spheres near random closest packing using spherical boundary conditions. Phil. Trans. R. Soc. A, 88:5824–5830, 1988.
  • [51] Gotoh, K., Jodrey, W.S., and Tory, E.M. Variation on local packing density near the wall of randomly packed bed of equal spheres. Powder Tech., 20:257–260, 1978.
  • [52] Taguchi. I., Kurashige, M., and Imai, K. Effects of cubic container’s wall or floor on random packing structures of spherical particles. JSME Int. J. Series A, 49:265–272, 2006.
  • [53] Cui, L., O’Sullivan, C., and O’Neill, S. An analysis of the triaxial apparatus using a mixed boundary three-dimensional discrete element model. Géotechnique, 57(10):831–844, 2007.
  • [54] Kodam, M., Bharadwaj, R., Curtis, J., Hancock, B., and Wassgren, C. Force model considerations for glued-sphere discrete element method simulations. Chem., Eng. Sci., pages 3466–3475, 2009.
  • [55] Nandakumar, K., Shu, Y., and Chuang, K.T. Predicting geometrical properties of random packed beds from computer simulation. AICHE J., 45(11):2286–2296, 1999.
  • [56] Buchalter, B.J. and Bradley, R.M. Orientational order in random packings of ellipses. Phys. Rev. A, 46(6):3046–3056, 1992.
  • [57] Williams, S.R. and Philipse, A.P. Random packings of spheres and spherocylinders simulated by mechanical contraction. Phys. Rev. E, 67(5):051301, 2003.
  • [58] Donev, A., Torquato, S., and Stillinger, F.H. Neighbour list collision-driven molecular dynamics simulation for non-spherical hard particles. II. Applications to ellipses and ellipsoids. J. Comp. Phys., 202(2):765–793, 2005.
  • [59] Man, W., Donev, A., Stillinger, F.H., Sullivan, M.T., Russel, W.B., Heeger, D., Inati, S., Torquato, S., and Chaikin, P.M. Experiments on random packings of ellipsoids. Phys. Rev. Lett., 94:198001, 2005.
  • [60] Jullien, R., Pavlovitch, A., and Meakin, P. Random packings of spheres built with sequential methods. J. Phys. A, 25:4103–4113, 1992.
  • [61] Vold, M.J. A numerical approach to the problem of sediment volume. J. Colloid Sci., 14:168–174, 1959.
  • [62] Vold, M.J. The sediment volume in dilute dispersions of spherical particles. J. Phys. Chem., 64:1616–1619, 1960.
  • [63] Vold, M.J. Computer simulation of floc formation in a colloidal suspension. J. Colloid Sci., 18:684–695, 1964.
  • [64] Vold, M.J. Sediment volume and structure in dispersions of anisometric particles. J. Phys. Chem., 63:1608–1612, 1959.
  • [65] Bennett, C.H. Serially deposited amorphous aggregates of hard spheres. J. App. Phys., 43(6):2727–2734, 1972.
  • [66] Adams, D.J. and Matheson, A.J. Computation of dense random packing of hard spheres. J. Chem. Phys., 56:1989–1994, 1972.
  • [67] Onoda, G.Y. and Toner, J. Deterministic, fractal defect structures in close packings of hard discs. Phys. Rev. Lett., 57:1340–1343, 1986.
  • [68] Visscher, W.M. and Bolsterli, M. Random packing of equal and unequal spheres in two and three dimensions. Nature, 239:504–507, October 27 1972.
  • [69] Rouillé, L., Missiaen, J.-M., and Thomas, G. Collective random packing of disks in the plane under the influence of a weak central force. J. Phys. Cond. Mat., 2:3041–3051, 1990.
  • [70] Aparacio, N.D. and Cocks, A.C.F. On the representation of random packings of spheres for sintering simulations. Acta Metall. Mater., 43:3873–3884, 1995.
  • [71] Meakin, P. and Jullien, R. Periodic disc packings generated by random deposition in narrow channels. Europhys. Lett., 15:851–856, 1991.
  • [72] Soppe, W. Computer simulation of random packings of hard spheres. Powder Tech., 62:189–196, 1990.
  • [73] Mueller, G.E. Numerical simulation of packed beds with monosized spheres in cylindrical containers. Powder Tech., 92:179–183, 1997.
  • [74] Mueller, G.E. Numerically packing spheres in cylinders. Powder Tech., 159(2):105–110, 2005.
  • [75] Coelho, D., Thovert, J.F., and Adler, P.M. Geometrical and transport properties of random packings of spheres and aspherical particles. Phys. Rev. E, 55(2):1959–1978, 1997.
  • [76] Feng, Y.T., Han, K., and Owen, D.R.J. Filling domains with disks: an advancing front approach. Int. J. Numer. Methods Engrg., 56(5):669–713, 2003.
  • [77] Han, K., Feng, Y.T., and Owen, D.R.J. Sphere packing with a geometric compression algorithm. Powder Tech., 155(1):33–41, 2005.
  • [78] Jullien, R., Meakin, P., and Pavlovitch, A. Particle size segregation by shaking in two-dimensional packings. Europhys. Lett., 22:523–528, 1993.
  • [79] Jullien, R., Pavlovitch, A., and Meakin, P. Three-dimensional model for particle-size segregation by shaking. Phys. Rev. Lett., 69:640–643, 1992.
  • [80] Barker, G.C. and Mehta, A. Vibrated powders: structure, correlations, and dynamics. Phys. Rev. A, 45:3435–3446, 1992.
  • [81] Jia, X. and Williams, R.A. A packing algorithm for particles of arbitrary shape. Powder Tech., 120:175–186, 2001.
  • [82] Jodrey, W.S. and Tory, E.M. Computer simulation of isotropic, homogeneous, dense random packings of equal spheres. Powder Tech., 30:111–118, 1981.
  • [83] Jodrey, W.S. and Tory, E.M. Computer simulation of close random packing of equal spheres. Phys. Rev. A, 32(4):2347–2351, 1985.
  • [84] Bargiel, M. and Moscinski, J. C-language program for the irregular close packing of hard spheres. Comp. Phys. Comm., 64:183–192, 1991.
  • [85] Bezrukov, A. and Stoyan, D. Simulation and statistical analysis of random packings of ellipsoids. Part. Part. Syst. Char., 23(5):388–398, 2006.
  • [86] Clarke, A.S. and Wiley, J.D. Numerical simulation of the dense random packing of a binary mixture of hard spheres: amorphous metals. Phys. Rev. B, 35:7350–7356, 1987.
  • [87] Lochmann, K., Anikeenko, A., Elsner, A., Medvedev, N., and Stoyan, D. Statistical verification of crystallization in hard sphere packings under densification. Eur. Phys. J. B, 53(1):67–76, 2006.
  • [88] Speedy, R.J. Random jammed packings of hard discs and spheres. J. Phys. Cond. Mat., 10:4185–4194, 1998.
  • [89] Zinchenko, A.Z. Algorithm for random close packing of spheres with periodic boundary conditions. J. Comp. Phys., 114(2):298–307, 1994.
  • [90] Hinrichsen, E.L., Feder, J., and Jøssang, T. Random packing of discs in two dimensions. Phys. Rev. A, 41(8):4199–4209, 1990.
  • [91] Lubachevsky, B.D. How to simulate billiards and similar systems. J. Comp. Phys., 94(2):255–283, 1991.
  • [92] Lubachevsky, B.D. and Stillinger, F.H. Geometric properties of random disc packings. J. Stat. Phys., 60(2):561–583, 1990.
  • [93] Lubachevsky, B.D., Stillinger, F.H., and Pinson, E.N. Disks vs. spheres: Contrasting properties of random packings. J. Stat. Phys., 64(2):510–524, 1991.
  • [94] Donev, A., Stillinger, F.H., Chalkin, P.M., and Torquato, S. Unusually dense crystal packing of ellipsoids. Phys. Rev. Lett., 92:255506, 2004.
  • [95] Nolan, G.T. and Kavanaugh, P.E. Computer simulation of random packing of hard spheres. Powder Tech., 72:149–155, 1992.
  • [96] Allen, M.P. and Tildesley, D.J. Computer Simulation of Liquids. Oxford, 1987.
  • [97] McNamara, S. and Young, W.R. Inelastic collapse in two dimensions. Phys. Rev. E, 50(1):28–31, 1994.
  • [98] Cundall, P.A. and Strack, O.D.L. A discrete numerical model for granular assemblies. Geotechnique, 29:47–65, 1979.
  • [99] Yen, K.Z.Y. and Chaki, T.K. A dynamic simulation of particle rearrangement in powder packings with realistic interactions. J. App. Phys., 71(7):3164–3173, 1992.
  • [100] Zhu, H.P., Zhou, Z.Y., Yang, R.Y., and Yu, A.B. Discrete particle simulation of particulate systems: A review of major applications and findings. Chemical Engineering Science, 63:5728–5770, 2008.
  • [101] Zhu, H.P., Zhou, Z.Y., Yang, R.Y., and Yu, A.B. Discrete particle simulation of particulate systems: Theoretical developments. Chemical Engineering Science, 62:3378–3396, 2007.
  • [102] Mueller, G.E. Radial void fraction distributions in randomly packed fixed beds of uniformly sized spheres in cylindrical constainers. Powder Tech., 72:269–275, 1992.
  • [103] Torquato, S. and Stell, G. Microstructure of two-phase random media.V. The $n$-point matrix probability functions for impenetrable spheres. J. Chem. Phys., 82(2):980–987, January 1985.
  • [104] Bhanu Prasad, P. and Jernot, J.P. Topological description of the densification of a granular medium. J. Microsc., 163:211–220, 1991.
  • [105] Jernot, J.P., Bhanu Prasad, P., and Demaleparde, P. Three-dimensional simulation of flow through a porous medium. J. Microsc., 167:9–21, 1192.
  • [106] Gotoh, K., Nakagawa, M., Furuuchi, M., and Yoshiga, A. Pore size distribution in random assemblies of equal spheres. J. Chem. Phys., 85:3078–3080, 1986.
  • [107] Daley, D.J. and Vere-Jones, D. Introduction To The Theory of Point Processes, Volume 1. Springer, 2nd edition, 2003.
  • [108] Schladitz, K. and Baddeley, A.J. A third-order point process characteristic. Scand. J. Stat., 27(4):657–671, 2000.
  • [109] Ripley, B.D. Statistical Inference For Spatial Processes. Wiley, 1988.
  • [110] Yang, R.Y., Zou, R.P., and Yu, A.B. Computer simulation of the packing of fine particles. Phys. Rev. E, 62(23):3900–3908, 2000.
  • [111] Rosato, A., Dybenko, O., Horntrop, D.J., Ratnaswamy, V., and Kondic, L. Microstructure evolution in density relaxation by tapping. Phys. Rev. E, 81(6):061301, 2010.
  • [112] Okabe, A., Boots, B., Sugihara, K., and Chiu, K. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, 2nd edition, 2000.
  • [113] Aste, T. and Di Matteo, T. Emergence of Gamma distributions in granular materials and packing models. Physical Review E, 77(2):021309, 2008.
  • [114] Baumstark, V. and Last, G. Gamma distributions for stationary Poisson flat processes. Adv. Appl. Prob., 41(4):911–939, 2009.
  • [115] Tassopoulos, M. and Rosner, D.E. Microstructural descriptors characterizing granular deposits. AICHE J., 38:15–25, 1992.
  • [116] Jullien, R., Jund, P., Caprion, D., and Quitmann, D. Computer investigation of long-range correlations and local order in random packings of spheres. Phys. Rev. E, 54(6):6035–6041, 1996.
  • [117] Brunner, G.O. The properties of coordination sequences and conclusions regarding the lowest possible density of zeolites. Physica A, 29(1):41–45, 1979.
  • [118] O’Keeffe, M. N-dimensional diamond, sodalite, and rare sphere packings. Acta Crystallogr. Sect. A, 47(6):748–753, 1991.
  • [119] Shechtman, D., Blech, I., Gratias, D., and Cahn, J.W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett., 53:1951–1953, 1984.
  • [120] Senechal, M. Quasicrystals and Geometry. Cambridge, 1995.
  • [121] Ziman, J.M. Models of Disorder. Cambridge, 1979.
  • [122] Meakin, P. and Jullien, R. Two-dimensional defect-free random packing. Europhys. Lett., 14(1):667–672, 1991.
  • [123] Steinhardt, P.J., Nelson, D.R., and Ronchetti, M. Icosahedral bond orientational order in supercooled liquids. Phys. Rev. Lett., 47(18):1297–1300, 1981.
  • [124] Steinhardt, P.J., Nelson, D.R., and Ronchetti, M. Bond-orientational order in liquids and gases. Phys. Rev. B, 28(2):784–805, 1983.
  • [125] Richard, P., Oger, L., Troadec, J.-P., and Gervois, A. Geometrical characterization of hard-sphere systems. Phys. Rev. E, 60(4):4551–4559, 1999.
  • [126] Kansal, A.R., Torquato, S., and Stillinger, F.H. Diversity of order and densities in jammed hard-particle packings. Phys. Rev. E, 66(4):041109, 2002.
  • [127] Anikeenko, A.V. and Medvedev, N.N. Homogeneous crystallization of the Lennard-Jones liquid. J. Struct. Chem., 47(2):267–276, 2006.
  • [128] Klein, D.J. and Randic, M. Resistance distance. J. Math. Chem., 12:81–95, 1993.
  • [129] Doyle, P.G. and Snell, J.L. Random Walks and Electrical Networks. Mathematical Association of America, 1984.
  • [130] Picka, J.D. and Stewart, T.D. A conduction-based statistic for description of orientation in anisotropic sphere packings. In Powders and Grains 2005 Proceedings, pages 329–332. Balkema, 2005.
  • [131] Argento, C. and Bouvard, D. Modeling the effective thermal conductivity of a random packing of spheres through densification. Int. J. Heat Mass Tran., 39(7):1334–1350, 1996.
  • [132] Maier, R.S., Kroll, D.M., Bernard, R.S., Howington, S.E., Peters, J.F., and Davis, H.T. Hydrodynamic dispersion in confined packed beds. Phys. Fluids, 15(12):3795–3815, 2003.
  • [133] Coube, O., Cocks, A.C.F., and Wu, C.-Y. Experimental and numerical study of die filling, powder transfer and die compaction. Powder Met., 48(1):68–76, 2005.
  • [134] Chung, Y. and Ooi, J. Influence of discrete element model parameters on bulk behavior of a granular solid under confined compression. Part. Sci. and Tech., 26(1):83–96, 2008.
  • [135] Chaudhuri, B., Muzzio, F.J., and Tomassone, M.S. Modeling of heat transfer in granular flow in rotating vessels. Chem. Eng. Sci., 61(19):6348–6360, 2006.
  • [136] Portillo, P., Muzzio, F., and Ierapetritou, M. Hybrid DEM-compartment modeling approach for granular mixing. AICHE J., 53(1):119–128, 2007.
  • [137] Sato Y., Nakamura H., and Watano S. Numerical analysis of agitation torque and particle motion in a high shear mixer. Powder Tech., 186(2):130–136, 2008.
  • [138] Chang, C.S. Discrete element method for slope stability analysis. J. Geotech. Eng. ASCE, 118:1889–1905, 1992.
  • [139] Brewster, R., Grest, G.S., Landry, J.W., and Levine, A.J. Plug flow and the breakdown of Bagnold scaling in cohesive granular flows. Phys. Rev. E, 72(061301), 2005.
  • [140] Ng, T.T. and Dobry, R. Numerical simulations of monotonic and cyclic loading of granular soil. J. Geotech. Eng. ASCE, 120(2):388–403, 1994.
  • [141] David, C.T., Garcia-Rojo, R., Herrmann, H.J., and Luding, S. Powder flow testing with 2d and 3d biaxial and triaxial simulations. Part. Part. Syst. Charact., 24(1):29–33, 2007.
  • [142] Thornton, C. and Zhang, L. A numerical examination of shear banding and simple shear non-coaxial flow rules. Phil. Mag., 86(21-22):3425–3452, 2006.
  • [143] Härtl, J. and Ooi, J.Y. Experiments and simulations of direct shear tests: porosity, contact friction, and bulk friction. Granular Matter, 10(4):263–271, 2008.
  • [144] Mcnamara, A. and Herrmann, H. Measurement of indeterminacy in packings of perfectly rigid discs. Phys. Rev. E, 70:061303, 2004.
  • [145] Gruhn, T. and Monson, P.A. Molecular dynamics simulations of hard sphere solidification at constant pressure. Phys. Rev. E, 64(6):061703, 2001.
  • [146] Gruhn, T. and Monson, P.A. Isobaric molecular dynamics simulations of hard sphere systems. Phys. Rev. E, 63(6):061106, 2001.
  • [147] Donev, A., Torquato, S., and Stillinger, F.H. Neighbour list collision-driven molecular dynamics simulation for non-spherical hard particles. I. Algorithmic details. J. Comp. Phys., 202(2):737–764, 2005.
  • [148] Williams, J.C. The segregation of particulate materials. Powder Tech., 15(2):245–251, 1976.
  • [149] Bridgwater, J. Fundamental powder mixing mechanisms. Powder Tech., 15(2):215–236, 1976.
  • [150] Rosato, A., Strandburg, K.J., Prinz, F., and Swendsen, R.H. Monte Carlo simulation of particulate matter segregation. Powder Tech., 49(1):59–69, 1986.
  • [151] Hong, D.C., Quinn, P.V., and Luding, S. Reverse Brazil nut problem: Competition between percolation and condensation. Phys. Rev. Lett., 86(1):3423–3426, 2001.
  • [152] Landau, L.D. and Lifshitz, E.M. Statistical Physics. Addison-Wesley, 1958.
  • [153] Brush, S.G. Statistical Physics and the Atomic Theory of Matter. Princeton, 1983.
  • [154] Minlos, R.A. Introduction to Mathematical Statistical Mechanics. American Mathematical Society, 2000.
  • [155] Penrose, M.D. and Yukich, J.E. Limit theory for random sequential packing and deposition. Ann. App. Prob., 12(1):272–301, 2002.
  • [156] Edwards, S.F. and Oakeshott, R.B.S. Theory of powders. Physica A, 157:1080–1090, 1989.
  • [157] Mounfield, C.C. and Edwards, S.F. A model for the packing of irregularly shaped grains. Physica A, 210:301–316, 1994.
  • [158] Lord Rayleigh. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Phil. Mag., 34:481–502, 1892.
  • [159] Perrins, W.T., McKenzie, D.R., and McPhedran, R.C. Transport properties of regular arrays of cylinders. Proc. R. Soc. A, 369(1737):207–225, 1979.
  • [160] Hornung, U. Homogenization and Porous Media. Springer, 1997.
  • [161] Milton, G.W. Theory of Composites. Cambridge, 2002.
  • [162] Milton, G.W. The coherent potential approximation is a realizable effective medium scheme. Commun. Math. Phys., 99(4):463–500, 1985.
  • [163] Diggle, P.J. and Gratton, R.J. Monte carlo methods of inference for implicit statistical models. J.R.S.S. B, 46:193–212, 1984.
  • [164] Baddeley, A.J. and Silverman, B.W. A cautionary example on the use of 2nd-order methods for analyzing point patterns. Biometrics, 40(4):1089–1093, 1984.
  • [165] Cressie, N.A.C. Statistics For Spatial Data. Wiley, New York, 1993.
  • [166] Baddeley, A., Turner, R., Møller, J., and Hazleton, M. Residual analysis for spatial point processes. J. R. Statist. Soc. B, 67(5):617–666, 2005.
  • [167] Meakin, P. and Skjeltorp, A.T. Application of experimental and numerical models to the physics of multiparticle systems. Adv. Phys., 42(1):1–127, 1993.
  • [168] Jullien, R. and Meakin, P. Computer simulations of steepest descent ballistic deposition. Colloids Surface A, 165:405–422, 2000.
  • [169] Wouterse, A. and Philipse, A.P. Geometrical cluster ensemble analysis of random sphere packings. J. Chem. Phys., 125:194709, 2006.
  • [170] Zhang, Z.P., Liu, L.F., Yuan, Y.D., and Yu, A.B. A simulation study of the effects of dynamic variables on the packing of spheres. Powder Tech., 116:23–32, 2001.