Statistical Science

A Conversation with Jim Pitman

David Aldous

Full-text: Open access


Jim Pitman was born in June 1949, received a Ph.D. in 1974 from the University of Sheffield with advisor Terry Speed, and since 1979 has been in the U.C. Berkeley Statistics department. He is known for research on many topics within probability, in particular for a long-running collaboration with Marc Yor on distributional properties of Brownian motion, and for his influential lecture notes Combinatorial Stochastic Processes. The following conversation took place at his home in December 2017 and February 2018.

Article information

Statist. Sci., Volume 33, Number 3 (2018), 458-467.

First available in Project Euclid: 13 August 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Mathematical probability Markov chain Brownian motion combinatorial stochastic processes


Aldous, David. A Conversation with Jim Pitman. Statist. Sci. 33 (2018), no. 3, 458--467. doi:10.1214/18-STS656.

Export citation


  • [1] Aldous, D. and Pitman, J. (1979). On the zero-one law for exchangeable events. Ann. Probab. 7 704–723.
  • [2] Aldous, D. and Pitman, J. (1983). The asymptotic speed and shape of a particle system. In Probability, Statistics and Analysis. London Mathematical Society Lecture Note Series 79 1–23. Cambridge Univ. Press, Cambridge.
  • [3] Aldous, D. and Pitman, J. (1998). The standard additive coalescent. Ann. Probab. 26 1703–1726.
  • [4] Aldous, D. J. (1985). Exchangeability and related topics. In École D’été de Probabilités de Saint-Flour, XIII—1983. Lecture Notes in Math. 1117 1–198. Springer, Berlin.
  • [5] Aldous, D. J. and Pitman, J. (1994). Brownian bridge asymptotics for random mappings. Random Structures Algorithms 5 487–512.
  • [6] Breiman, L. (1968). Probability. Addison-Wesley, Reading.
  • [7] Breiman, L. (1969). Probability and Stochastic Processes with a View Toward Applications. Houghton Miffin Co, Boston, MA.
  • [8] Çinlar, E., Chung, K. L. and Getoor, R. K., eds. (1983) In Seminar on Stochastic Processes, 1982. Progress in Probability and Statistics 5. Birkhäuser, Boston, MA.
  • [9] Diaconis, P. and Freedman, D. (1980). de Finetti’s theorem for Markov chains. Ann. Probab. 8 115–130.
  • [10] Diaconis, P. and Freedman, D. (1980). de Finetti’s generalizations of exchangeability. In Studies in Inductive Logic and Probability, Vol. II 233–249. Univ. California Press, Berkeley, CA.
  • [11] Dynkin, E. B. (1961). Theory of Markov Processes. Prentice-Hall, Englewood Cliffs, NJ.
  • [12] Edwards, R. E. (1967). Fourier Series: A Modern Introduction. Vol. I. Holt, Rinehard & Winston, New York.
  • [13] Edwards, R. E. (1967). Fourier Series: A Modern Introduction. Vol. II. Holt, Rinehart & Winston, New York.
  • [14] Evans, S. N. and Pitman, J. (1998). Construction of Markovian coalescents. Ann. Inst. Henri Poincaré Probab. Stat. 34 339–383.
  • [15] Ewens, W. J. (1969). Population Genetics. Methuen, London.
  • [16] Freedman, D. (1971). Markov Chains. Holden-Day, San Francisco, CA.
  • [17] Gnedin, A. and Pitman, J. (2005). Exchangeable Gibbs partitions and Stirling triangles. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 325 83–102, 244–245.
  • [18] Gnedin, A. and Pitman, J. (2005). Regenerative composition structures. Ann. Probab. 33 445–479.
  • [19] Greenwood, P. and Pitman, J. (1980). Construction of local time and Poisson point processes from nested arrays. J. Lond. Math. Soc. (2) 22 182–192.
  • [20] Greenwood, P. and Pitman, J. (1980). Fluctuation identities for Lévy processes and splitting at the maximum. Adv. in Appl. Probab. 12 893–902.
  • [21] Itô, K. and McKean, H. P. Jr. (1965). Diffusion Processes and Their Sample Paths. Die Grundlehren der Mathematischen Wissenschaften, Band 125. Academic Press, New York.
  • [22] Jacobsen, M. (1974). Splitting times for Markov processes and a generalised Markov property for diffusions. Z. Wahrsch. Verw. Gebiete 30 27–43.
  • [23] Le Gall, J.-F. (1989). Marches aléatoires, mouvement brownien et processus de branchement. In Séminaire de Probabilités, XXIII. Lecture Notes in Math. 1372 258–274. Springer, Berlin.
  • [24] Le Gall, J.-F. (1993). The uniform random tree in a Brownian excursion. Probab. Theory Related Fields 96 369–383.
  • [25] Lovász, L. and Winkler, P. (1998). Mixing times. In Microsurveys in Discrete Probability (Princeton, NJ, 1997). DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 41 85–133. Amer. Math. Soc., Providence, RI.
  • [26] Meyer, P. A. (ed.) (1976). Séminaire de Probabilités, X. Lecture Notes in Mathematics, Vol. 511. Springer, Berlin.
  • [27] Neveu, J. and Pitman, J. (1989). Renewal property of the extrema and tree property of the excursion of a one-dimensional Brownian motion. In Séminaire de Probabilités, XXIII. Lecture Notes in Math. 1372 239–247. Springer, Berlin.
  • [28] Neveu, J. and Pitman, J. W. (1989). The branching process in a Brownian excursion. In Séminaire de Probabilités, XXIII. Lecture Notes in Math. 1372 248–257. Springer, Berlin.
  • [29] Perman, M., Pitman, J. and Yor, M. (1992). Size-biased sampling of Poisson point processes and excursions. Probab. Theory Related Fields 92 21–39.
  • [30] Pitman, J. (1999). Coalescent random forests. J. Combin. Theory Ser. A 85 165–193.
  • [31] Pitman, J. (2006). Combinatorial Stochastic Processes. Lecture Notes in Math. 1875. Springer, Berlin.
  • [32] Pitman, J. and Yor, M. (1981). Bessel processes and infinitely divisible laws. In Stochastic Integrals (Proc. Sympos., Univ. Durham, Durham, 1980). Lecture Notes in Math. 851 285–370. Springer, Berlin.
  • [33] Pitman, J. and Yor, M. (1982). A decomposition of Bessel bridges. Z. Wahrsch. Verw. Gebiete 59 425–457.
  • [34] Pitman, J. and Yor, M. (1986). Asymptotic laws of planar Brownian motion. Ann. Probab. 14 733–779.
  • [35] Pitman, J. W. (1975). One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. in Appl. Probab. 7 511–526.
  • [36] Pitman, J. W. (1977). Occupation measures for Markov chains. Adv. in Appl. Probab. 9 69–86.
  • [37] Sheth, R. K. and Pitman, J. (1997). Coagulation and branching process models of gravitational clustering. Mon. Not. R. Astron. Soc. 289 66–82.
  • [38] Steele, J. M. (2001). Stochastic Calculus and Financial Applications. Applications of Mathematics (New York) 45. Springer, New York.
  • [39] Takács, L. (1967). Combinatorial Methods in the Theory of Stochastic Processes. Wiley, New York.
  • [40] Williams, D. (1974). Path decomposition and continuity of local time for one-dimensional diffusions. I. Proc. Lond. Math. Soc. (3) 28 738–768.