Statistical Science

Rejoinder: Likelihood Inference for Models with Unobservables Another View

Youngjo Lee and John A. Nelder

Full-text: Open access

Article information

Statist. Sci., Volume 24, Number 3 (2009), 294-302.

First available in Project Euclid: 31 March 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Lee, Youngjo; Nelder, John A. Rejoinder: Likelihood Inference for Models with Unobservables Another View. Statist. Sci. 24 (2009), no. 3, 294--302. doi:10.1214/09-STS277REJ.

Export citation


  • Barnard, G. A. (1995). Pivotal models and the fiducial argument. Int. Stat. Rev. 63 309–323.
  • Barndorff-Nielsen, O. E. (1983). On a formula for the distribution of the maximum likelihood estimator. Biometrika 70 343–365.
  • Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transaction 53 370–418; reprinted in Biometrika 45 (1958) 293–315.
  • Birnbaum, A. (1962). On the foundations of statistical inference (with discussion). J. Amer. Statist. Assoc. 57 269–326.
  • Bjørnstad, J. F. (1996). On the generalization of the likelihood function and likelihood principle. J. Amer. Statist. Assoc. 91 791–806.
  • Booth J. G. and Hobert, J. P. (1998). Standard errors of prediction in generalized linear mixed models. J. Amer. Statist. Assoc. 93 262–272.
  • Box, G. E. P. (1980). Sampling and Bayes’ inference in scientific modelling and robustness (with discussion). J. Roy. Statist. Soc. Ser. A 143 383–430.
  • Carlin, B. P. and Louis, T. A. (1996). Bayesian and Empirical Bayesian Methods for Data Analysis. Monographs on Statistics and Applied Probability 69. Chapman and Hall, London.
  • Cox, D. R (1975). Partial likelihood. Biometrika 62 269–276.
  • Cox, D. R. and Reid, N. (1987). Parameter orthogonality and approximate conditional inference (with discussion). J. Roy Statist. Soc. Ser. B 49 1–39.
  • de Finetti, B. (1974). Theory of Probability, Vol. 1. Wiley, New York.
  • Efron, B. (1998). R. A. Fisher in the 21st Century. Statist. Sci. 13 95–122.
  • Ehrenberg, A. S. C. (1975). Data Reduction. Wiley, London.
  • Fisher, R. A. (1934). The effects of methods of ascertainment upon the estimation of frequencies. Annals of Eugenics 6 13–25.
  • Ha, I. D., Lee, Y. and MacKenzie, G. (2007). Model selection for multi-component frailty models. Statist. Med. 26 4790–4807.
  • Ha, I. D., Noh, M. and Lee, Y. (2010). Bias reduction of likelihood estimates in semiparametric frailty models. Scand. Statist. To appear.
  • Henderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection model. Biometrics 31 423–447.
  • Kass, R. E. and Steffey, D. (1989). Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models). J. Amer. Statist. Assoc. 84 717–726.
  • Kim, D., Lee, Y. and Oh, H. S. (2006). Hierarchical-likelihood-Based wavelet method for denoising signals with missing data. IEEE Signal Processing Letters 13 361–364.
  • Laird, N. (1978). Nonparametric maximum likelihood estimation of a mixing distribution. J. Amer. Statist. Assoc. 73 805–811.
  • Lee, Y. (2002). Robust variance estimators for fixed-effect estimates with hierarchical-likelihood. Statist. Comp. 12 201–207.
  • Lee, Y. and Ha, I. D. (2010). Orthodox BLUP versus h-likelihood methods for inferences about random effects in Tweedie mixed models. Statist. Comp. To appear.
  • Lee, Y., Jang, M. and Lee, W. (2010). Prediction interval for diesease mapping using hierarchical likelihood. To appear.
  • Lee, T. C. M. and Meng, X. (2005). A self-consistent wavelet method for denoising image with missing pixels. In Proc. 30th IEE Int. Conf. Acoustics. Speech, Signal Processing 2 41–44.
  • Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models (with discussion). J. Roy. Statist. Soc. Ser. B 58 619–678.
  • Lee, Y. and Nelder, J. A. (1999). The robustness of the quasilikelihood estimator. Canad. J. Statist. 27 321–327.
  • Lee, Y. and Nelder, J. A. (2005). Likelihood for random-effects (with discussion). Statistical and Operational Research Transactions 29 141–182.
  • Lee, Y. and Nelder, J. A. (2006). Fitting via alternative random-effect models. Statist. Comp. 16 69–75.
  • Lee, Y, Nelder, J. A and Pawitan, Y. (2006). Generalized Linear Models with Random Effects: Unified Analysis via H-Likelihood. Chapman and Hall, London.
  • Lee, Y. and Oh, H. S. (2010). A new random-effect model for sparse variable Selection. To appear.
  • Little, R. J. A. (2006). Calibrated Bayes: A Bayes/Frequentist roadmap. Amer. Statist. 60 213–223.
  • Little, R. J. A. and Rubin, D. B. (1983). On jointly estimating parameters and missing data by maximizing the complete-data likelihood. Amer. Statist. 37 218–220.
  • Ma, R. and Jorgensen, B. (2007). Nested generalized linear mixed models: Orthodox best linear unbiased predictor approach. J. Roy. Statist. Soc. Ser. B 69 625–641.
  • Neyman, J. and Scott, E. L. (1948). Consistent estimation from partially consistent observations. Econometrica 16 1–32.
  • Noh, M., Pawitan, Y. and Lee, Y. (2005). Robust ascertainment-adjusted parameter estimation. Genetic Epidemiology 29 68–75.
  • Pawitan, Y. (2001). In All Likelihood: Statistical Modeling and Inference Using Likelihood. Oxford Univ. Press, New York.
  • Senn, S. (2008). Comments on article by Gelman. Bayesian Anal. 3 459–462.
  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit. J. Roy. Statist. Soc. Ser. B 64 583–639.
  • Vaida, F. and Blanchard, S. (2005). Conditional Akaike information for mixed-effects models. Biometrika 92 351–370.
  • Yun, S., Lee, Y. and Kenward, M. G. (2007). Using hierarchical likelihood for missing data problems. Biometrika 94 905–919.