Statistical Science

Higher Accuracy for Bayesian and Frequentist Inference: Large Sample Theory for Small Sample Likelihood

M. Bédard, D. A. S. Fraser, and A. Wong

Full-text: Open access

Abstract

Recent likelihood theory produces p-values that have remarkable accuracy and wide applicability. The calculations use familiar tools such as maximum likelihood values (MLEs), observed information and parameter rescaling. The usual evaluation of such p-values is by simulations, and such simulations do verify that the global distribution of the p-values is uniform(0, 1), to high accuracy in repeated sampling. The derivation of the p-values, however, asserts a stronger statement, that they have a uniform(0, 1) distribution conditionally, given identified precision information provided by the data. We take a simple regression example that involves exact precision information and use large sample techniques to extract highly accurate information as to the statistical position of the data point with respect to the parameter: specifically, we examine various p-values and Bayesian posterior survivor s-values for validity. With observed data we numerically evaluate the various p-values and s-values, and we also record the related general formulas. We then assess the numerical values for accuracy using Markov chain Monte Carlo (McMC) methods. We also propose some third-order likelihood-based procedures for obtaining means and variances of Bayesian posterior distributions, again followed by McMC assessment. Finally we propose some adaptive McMC methods to improve the simulation acceptance rates. All these methods are based on asymptotic analysis that derives from the effect of additional data. And the methods use simple calculations based on familiar maximizing values and related informations.

The example illustrates the general formulas and the ease of calculations, while the McMC assessments demonstrate the numerical validity of the p-values as percentage position of a data point. The example, however, is very simple and transparent, and thus gives little indication that in a wide generality of models the formulas do accurately separate information for almost any parameter of interest, and then do give accurate p-value determinations from that information. As illustration an enigmatic problem in the literature is discussed and simulations are recorded; various examples in the literature are cited.

Article information

Source
Statist. Sci., Volume 22, Number 3 (2007), 301-321.

Dates
First available in Project Euclid: 2 January 2008

Permanent link to this document
https://projecteuclid.org/euclid.ss/1199285030

Digital Object Identifier
doi:10.1214/07-STS240

Mathematical Reviews number (MathSciNet)
MR2416807

Zentralblatt MATH identifier
1246.62027

Keywords
Asymptotics Bayesian posterior s-value canonical parameter default prior higher order likelihood maximum likelihood departure Metropolis–Hastings algorithm p-value regression example third order

Citation

Bédard, M.; Fraser, D. A. S.; Wong, A. Higher Accuracy for Bayesian and Frequentist Inference: Large Sample Theory for Small Sample Likelihood. Statist. Sci. 22 (2007), no. 3, 301--321. doi:10.1214/07-STS240. https://projecteuclid.org/euclid.ss/1199285030


Export citation

References

  • Andrews, D. F., Fraser, D. A. S. and Wong, A. C. M. (2005). Computation of distribution functions from likelihood information near observed data. J. Statist. Plann. Inference 134 180--193.
  • Barndorff-Nielsen, O. E. (1991). Modified signed log likelihood ratio. Biometrika 78 557--563.
  • Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Phil. Trans. Roy. Soc. London 53 370--418 and 54 296--325; reprinted Biometrika 45 (1958), 293--315.
  • Behrens, W. V. (1929). Ein Beitrag zur Fehlerbereichnung bei wenigen Beobachtungen. Landwirtschaftliche Jahresberichte 68 807--837.
  • Bernardo, J. M., Bayarri, M. J., Berger, J. O., Dawid, A. P., Heckerman, D., Smith, A. F. M. and West, M., eds. (2003). Bayesian Statistics 7. Clarendon Press.
  • Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion). J. Roy. Statist. Soc. Ser. B 41 113--147.
  • Brazzale, A. R. (2000). Practical small sample parametric inference. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne.
  • Brown, L. D., Cai, T. T. and DasGupta, A. (2001). Interval estimation for a binomial proportion (with discussion). Statist. Sci. 16 101--133.
  • Cakmak, S., Fraser, D. A. S. and Reid, N. (1994). Multivariate asymptotic model: Exponential and location approximations. Utilitas Math. 46 21--31.
  • Cakmak, S., Fraser, D. A. S., McDunnough, P., Reid, N. and Yuan, X. (1998). Likelihood centered asymptotic model exponential and location model versions. J. Statist. Plann. Inference 66 211--222.
  • Casella, G., DiCiccio, T. and Wells, M. T. (1995). Discussion of ``The roles of conditioning in inference'' by N. Reid. Statist. Sci. 10 179--185.
  • Cox, D. R. (1958). Some problems connected with statistical inference. Ann. Math. Statist. 29 357--372.
  • Daniels, H. E. (1954). Saddlepoint approximation in statistics. Ann. Math. Statist. 25 631--650.
  • Davison, A., Fraser, D. A. S. and Reid, N. (2006). Improved likelihood inference for discrete data. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 495--508.
  • Dawid, A. P., Stone, M. and Zidek, J. V. (1973). Marginalization paradoxes in Bayesian and structural inference (with discussion). J. Roy. Statist. Soc. Ser B 35 189--233.
  • DiCiccio, T. and Martin, M. A. (1991). Approximations of marginal tail probabilities for a class of smooth functions with applications to Bayesian and conditional inference. Biometrika 78 891--902.
  • Fisher, R. A. (1935). The logic of inductive inference. J. Roy. Statist. Soc. 98 39--54.
  • Fraser, D. A. S. (1979). Inference and Linear Models. McGraw-Hill, New York.
  • Fraser, D. A. S. (2004) Ancillaries and conditional inference (with discussion). Statist. Sci. 19 333--369.
  • Fraser, D. A. S. and Reid, N. (1993). Third-order asymptotic models: Likelihood functions leading to accurate approximations for distribution functions. Statist. Sinica 3 67--82.
  • Fraser, D. A. S. and Reid, N. (1995). Ancillaries and third-order significance. Utilitas Math. 47 33--53.
  • Fraser, D. A. S. and Reid, N. (2001). Ancillary information for statistical inference. In Empirical Bayes and Likelihood Inference (S. E. Ahmed and N. Reid, eds.) 185--207. Springer, New York.
  • Fraser, D. A. S. and Reid, N. (2002). Strong matching of frequentist and Bayesian inference. J. Statist. Plann. Inference 103 263--285.
  • Fraser, D. A. S., Reid, N., Li, R. and Wong, A. (2003). $p$-value formulas from likelihood asymptotics: Bridging the singularities. J. Statist. Res. 37 1--15.
  • Fraser, D. A. S., Reid, N. and Wong, A. (2005). What a model with data says about theta. Internat. J. Statist. Sci. 3 163--178.
  • Fraser, D. A. S., Reid, N. and Wu, J. (1999). A simple general formula for tail probabilities for frequentist and Bayesian inference. Biometrika 86 249--264.
  • Fraser, D. A. S. and Wong, A. (2004). Algebraic extraction of the canonical asymptotic model: Scalar case. J. Statist. Studies 1 29--49.
  • Fraser, D. A. S., Wong, A. and Sun, Y. (2007). Bayes frequentist and enigmatic examples. Report, Dept. Mathematics and Statistics, York Univ.
  • Fraser, D. A. S., Wong, A. and Wu, J. (1999). Regression analysis, nonlinear or nonnormal: Simple and accurate $p$-values from likelihood analysis. J. Amer. Statist. Assoc. 94 1286--1295.
  • Fraser, D. A. S., Wong, A. and Wu, J. (2004). Simple accurate and unique: The methods of modern likelihood theory. Pakistan J. Statist. 20 173--192.
  • Ghosh, M. and Kim, Y.-H. (2001). The Behrens--Fisher problem revisited: A Bayes-frequentist synthesis. Canad. J. Statist. 29 5--17.
  • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 97--109.
  • Jeffreys, H. (1946). An invariant form for the prior distribution in estimation problems. Proc. Roy. Soc. London Ser. A 186 453--461.
  • Jeffreys, H. (1961). Theory of Probability, 3rd ed. Clarendon Press, Oxford
  • Laplace, P. S. (1812). Théorie analytique des probabilités. Paris.
  • Lugannani, R. and Rice, S. (1980). Saddle point approximation for the distribution function of the sum of independent variables. Adv. in Appl. Probab. 12 475--490.
  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953). Equations of state calculations by fast computing machines. J. Chem. Phys. 21 1087--1092.
  • Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods, 2nd ed. Springer, New York.
  • Strawderman, R. (2000). Higher-order asymptotic approximation: Laplace, saddlepoint, and related methods. J. Amer. Statist. Assoc. 95 1358--1364.
  • Welch, B. and Peers, H. W. (1963). On formulae for confidence points based on integrals of weighted likelihoods. J. Roy. Statist. Soc. Ser. B 25 318--329.