Statistical Science

William H. Kruskal and the Development of Coordinate-Free Methods

Morris L. Eaton

Full-text: Open access

Article information

Statist. Sci., Volume 22, Number 2 (2007), 264-265.

First available in Project Euclid: 27 September 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Eaton, Morris L. William H. Kruskal and the Development of Coordinate-Free Methods. Statist. Sci. 22 (2007), no. 2, 264--265. doi:10.1214/088342306000000367.

Export citation


  • Arnold, S. F. (1979). A coordinate-free approach to finding optimal procedures for repeated measures designs. Ann. Statist. 7 812--822.
  • Arnold, S. F. (1981). The Theory of Linear Models and Multivariate Analysis. Wiley, New York.
  • Christensen, R. (2002). Plane Answers to Complex Questions: The Theory of Linear Models, 3rd ed. Springer, New York.
  • Eaton, M. L. (1970). Gauss--Markov estimation for multivariate linear models: A coordinate-free approach. Ann. Math. Statist. 41 528--538.
  • Eaton, M. L. (1983). Multivariate Statistics: A Vector Space Approach. Wiley, New York.
  • Eaton, M. L. (1985). The Gauss--Markov theorem in multivariate analysis. In Multivariate Analysis VI (P. R. Krishnaiah, ed.) 177--201. North-Holland, Amsterdam.
  • Halmos, P. (1974). Finite-Dimensional Vector Spaces, reprint of 2nd ed. Springer, New York.
  • Halmos, P. and Savage, L. J. (1949). Application of the Radon--Nikodym theorem to sufficient statistics. Ann. Math. Statist. 20 225--241.
  • Kruskal, W. (1961). The coordinate-free approach to Gauss--Markov estimation and its application to missing and extra observations. Proc. Fourth Berkeley Symp. Math. Statist. Probab. 1 435--451. Univ. California Press, Berkeley.
  • Kruskal, W. (1968). When are Gauss--Markov and least squares estimators identical? A coordinate-free approach. Ann. Math. Statist. 39 70--75.
  • Zabell, S. (1994). A conversation with William Kruskal. Statist. Sci. 9 285--303.