Statistical Science

Fuzzy and Randomized Confidence Intervals and P-Values

Charles J. Geyer and Glen D. Meeden

Full-text: Open access


The optimal hypothesis tests for the binomial distribution and some other discrete distributions are uniformly most powerful (UMP) one-tailed and UMP unbiased (UMPU) two-tailed randomized tests. Conventional confidence intervals are not dual to randomized tests and perform badly on discrete data at small and moderate sample sizes. We introduce a new confidence interval notion, called fuzzy confidence intervals, that is dual to and inherits the exactness and optimality of UMP and UMPU tests. We also introduce a new P-value notion, called fuzzy P-values or abstract randomized P-values, that also inherits the same exactness and optimality.

Article information

Statist. Sci., Volume 20, Number 4 (2005), 358-366.

First available in Project Euclid: 12 January 2006

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Confidence interval P-value hypothesis test uniformly most powerful unbiased (UMP and UMPU) fuzzy set theory randomized test


Geyer, Charles J.; Meeden, Glen D. Fuzzy and Randomized Confidence Intervals and P -Values. Statist. Sci. 20 (2005), no. 4, 358--366. doi:10.1214/088342305000000340.

Export citation


  • Agresti, A. and Coull, B. A. (1998). Approximate is better than ``exact'' for interval estimation of binomial proportions. Amer. Statist. 52 119--126.
  • Blyth, C. R. and Hutchinson, D. W (1960). Table of Neyman---shortest unbiased confidence intervals for the binomial parameter. Biometrika 47 381--391.
  • Brown, L. D., Cai, T. T. and DasGupta, A. (2001). Interval estimation for a binomial proportion (with discussion). Statist. Sci. 16 101--133.
  • Casella, G. (2001). Comment on ``Interval estimation for a binomial proportion,'' by Brown, Cai and DasGupta (2001). Statist. Sci. 16 120--122.
  • Geyer, C. J. and Meeden, G. D. (2004). ump: An R package for UMP and UMPU tests. Available at
  • Klir, G. J., St. Clair, U. H. and Yuan, B. (1997). Fuzzy Set Theory: Foundations and Applications. Prentice Hall, Upper Saddle River, NJ.
  • Lehmann, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York (2nd ed., Wiley, 1986; Springer, 1997).
  • R Development Core Team (2004). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at