Statistical Science

Inference Functions and Quadratic Score Tests

Bruce G. Lindsay and Annie Qu

Full-text: Open access


A general expository description is given of the use of quadratic score test statistics as inference functions. This methodology allows one to do efficient estimation and testing in a semiparametric model defined by a set of mean-zero estimating functions. The inference function is related to a quadratic minimum distance problem. The asymptotic chi-squared properties are shown to be the consequences of asymptotic projection properties. Shortcomings of the asymptotic theory are discussed and a bootstrap method is shown to correct for anticonservative testing behavior.

Article information

Statist. Sci., Volume 18, Issue 3 (2003), 394-410.

First available in Project Euclid: 6 February 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Bootstrapping chi-squared test Edgeworth expansion generalized estimating equation generalized method of moments likelihood quadratic inference function quasi-likelihood semiparametric model


Lindsay, Bruce G.; Qu, Annie. Inference Functions and Quadratic Score Tests. Statist. Sci. 18 (2003), no. 3, 394--410. doi:10.1214/ss/1076102427.

Export citation


  • Aitchison, J. and Silvey, S. D. (1958). Maximum-likelihood estimation of parameters subject to restraints. Ann. Math. Statist. 29 813--828.
  • Barankin, E. and Gurland, J. (1951). On asymptotically normal efficient estimators. I. Univ. California Publ. Statist. 1 89--129.
  • Barnhart, H. X. and Williamson, J. M. (1998). Goodness-of-fit tests for GEE modeling with binary responses. Biometrics 54 720--729.
  • Beran, R. (1988). Prepivoting test statistics: A bootstrap view of asymptotic refinements. J. Amer. Statist. Assoc. 83 687--697.
  • Boos, D. D. (1992). On generalized score tests. Amer. Statist. 46 327--333.
  • Chaganty, N. R. (1997). An alternative approach to the analysis of longitudinal data via generalized estimating equations. J. Statist. Plann. Inference 63 39--54.
  • Chen, H. Y. and Little, R. J. A. (1999). A test of missing completely at random for generalised estimating equations with missing data. Biometrika 86 1--13.
  • Corcoran, S. A. (1998). Bartlett adjustment of empirical discrepancy statistics. Biometrika 85 967--972.
  • Corcoran, S. A. and Davison, A. C. (1995). Reliable inference from empirical likelihoods. Unpublished manuscript.
  • Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. Chapman and Hall, London.
  • Cressie, N. and Read, T. (1984). Multinomial goodness-of-fit tests. J. Roy. Statist. Soc. Ser. B 46 440--464.
  • Davidson, R. and MacKinnon, J. G. (1983). Small sample properties of alternative forms of the Lagrange multiplier test. Econom. Lett. 12 269--275.
  • Davidson, R. and MacKinnon, J. G. (1984). Convenient specification tests for logit and probit models. J. Econometrics 25 241--262.
  • Efron, B. (1987). Better bootstrap confidence intervals (with discussion). J. Amer. Statist. Assoc. 82 171--200.
  • Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman and Hall, New York.
  • Ferguson, T. S. (1958). A method of generating best asymptotically normal estimates with application to the estimation of bacterial densities. Ann. Math. Statist. 29 1046--1062.
  • Field, C. A. (1982). Small sample asymptotic expansions for multivariate $M$-estimates. Ann. Statist. 10 672--689.
  • Foutz, R. V. and Srivastava, R. C. (1977). The performance of the likelihood ratio test when the model is incorrect. Ann. Statist. 5 1183--1194.
  • Gallant, A. R. and Tauchen, G. (1996). Which moments to match? Econometric Theory 12 657--681.
  • Godambe, V. P. (1960). An optimum property of regular maximum-likelihood estimation. Ann. Math. Statist. 31 1208--1211.
  • Hall, P. (1986). On the bootstrap and confidence intervals. Ann. Statist. 14 1431--1452.
  • Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer, New York.
  • Hall, P. and Horowitz, J. L. (1996). Bootstrap critical values for tests based on generalized-method-of-moments estimators. Econometrica 64 891--916.
  • Hansen, L. (1982). Large sample properties of generalized method of moments estimators. Econometrica 50 1029--1054.
  • Hansen, L., Heaton, J. and Yaron, A. (1996). Finite-sample properties of some alternative GMM estimators. J. Bus. Econom. Statist. 14 262--280.
  • Harris, D. and Mátyás, L. (1999). Introduction to the generalized method of moments estimation. In Generalized Method of Moments Estimation (L. Mátyás, ed.) 1--30. Cambridge Univ. Press.
  • Heyde, C. C. and Morton, R. (1998). Multiple roots in general estimating equations. Biometrika 85 954--959.
  • Hu, F. and Kalbfleisch, J. D. (2000). The estimating function bootstrap (with discussion). Canad. J. Statist. 28 449--499.
  • Imbens, G. W. (1997). One-step estimators for over-identified generalized method of moments models. Rev. Econom. Stud. 64 359--383.
  • Imbens, G. W., Spady, R. H. and Johnson, P. (1998). Information theoretic approaches to inference in moment condition models. Econometrica 66 333--357.
  • Jing, B. and Robinson, J. (1994). Saddlepoint approximations for marginal and conditional probabilities of transformed variables. Ann. Statist. 22 1115--1132.
  • Kitamura, Y. and Stutzer, M. (1997). An information-theoretic alternative to generalized method of moments estimation. Econometrica 65 861--874.
  • Künsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. Ann. Statist. 17 1217--1241.
  • Lahiri, S. N. (1996). On Edgeworth expansion and moving block bootstrap for Studentized $M$-estimators in multiple linear regression models. J. Multivariate Anal. 56 42--59.
  • Lee, M. J. (1996). Methods of Moments and Semiparametric Econometrics for Limited Dependent Variable Models. Springer, New York.
  • Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73 13--22.
  • Lindsay, B. G. (1994). Efficiency versus robustness: The case for minimum Hellinger distance and related methods. Ann. Statist. 22 1081--1114.
  • Mátyás, L., ed. (1999). Generalized Method of Moments Estimation. Cambridge Univ. Press.
  • Monti, A. C. and Ronchetti, E. (1993). On the relationship between empirical likelihood and empirical saddlepoint approximations for multivariate $M$-estimators. Biometrika 80 329--338.
  • Newey, W. K. and McFadden, D. (1994). Large sample estimation and hypothesis testing. In Handbook of Econometrics (R. Engle and D. McFadden, eds.) 4 2111--2245. North--Holland, Amsterdam.
  • Newey, W. K. and Smith, R. J. (2002). Higher order properties of GMM and generalized empirical likelihood estimators. Unpublished manuscript.
  • Newey, W. K. and West, K. D. (1987). Hypothesis testing with efficient method of moments estimation. Internat. Econom. Rev. 28 777--787.
  • Neyman, J. (1949). Contribution to the theory of the $\chi ^2$ test. Proc. Berkeley Symp. Math. Statist. Probab. 239--273. Univ. California Press.
  • Neyman, J. and Pearson, E. S. (1933). On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. Roy. Soc. London Ser. A 231 289--337.
  • Owen, A. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75 237--249.
  • Owen, A. (1990). Empirical likelihood ratio confidence regions. Ann. Statist. 18 90--120.
  • Pan, W. (2002). Goodness-of-fit tests for GEE with correlated binary data. Scand. J. Statist. 29 101--110.
  • Park, C. (2000). Robust estimation and testing based on quadratic inference functions. Ph.D. dissertation, Dept. Statistics, Pennsylvania State Univ.
  • Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philos. Mag. Ser. 5 50 157--175.
  • Qin, J. and Lawless, J. (1994). Empirical likelihood and general estimating equations. Ann. Statist. 22 300--325.
  • Qu, A. and Lindsay, B. G. (1999). Bootstrapping for hypothesis testing using quadratic inference functions for longitudinal data. Technical report, Likelihood Center, Dept. Statistics, Pennsylvania State Univ.
  • Qu, A. and Lindsay, B. G. (2003). Building adaptive estimating equations when inverse-of-covariance estimation is difficult. J. R. Stat. Soc. Ser. B Stat. Methodol. 65 127--142.
  • Qu, A., Lindsay, B. G. and Li, B. (2000). Improving generalised estimating equations using quadratic inference functions. Biometrika 87 823--836.
  • Qu, A. and Song, P. X. (2002). Testing ignorable missingness in estimating equation approaches for longitudinal data. Biometrika 89 841--850.
  • Rao, C. R. (1948). Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Proc. Cambridge Philos. Soc. 44 50--57.
  • Rao, C. R. (1973). Linear Statistical Inference and Its Applications, 2nd ed. Wiley, New York.
  • Robinson, J., Ronchetti, E. and Young, G. A. (2003). Saddlepoint approximations and tests based on multivariate $M$-estimates. Ann. Statist. 31 1154--1169.
  • Ronchetti, E. and Trojani, F. (2002). Saddlepoint approximations and test statistics for accurate inference in overidentifying moment conditions models. Unpublished manuscript.
  • Rotnitzky, A. and Jewell, N. P. (1990). Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data. Biometrika 77 485--497.
  • Rotnitzky, A. and Wypij, D. (1994). A note on the bias of estimators with missing data. Biometrics 50 1163--1170.
  • Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York.
  • Shults, J. and Chaganty, N. R. (1998). Analysis of serially correlated data using quasi-least squares. Biometrics 54 1622--1630.
  • Silvey, S. D. (1959). The Lagrangian multiplier test. Ann. Math. Statist. 30 389--407.
  • Singh, A. C. and Mantel, H. J. (1998). Minimum chi-square estimating function and the problem of choosing among multiple roots. In Proc. Biometrics Section 102--107. Amer. Statist. Assoc., Alexandria, VA.
  • Singh, K. (1981). On the asymptotic accuracy of Efron's bootstrap. Ann. Statist. 9 1187--1195.
  • Small, C. G., Wang, J. and Yang, Z. (2000). Eliminating multiple root problems in estimation (with discussion). Statist. Sci. 15 313--341.
  • Small, D. (2002). Inference and model selection for instrumental variables regression. Ph.D. dissertation, Dept. Statistics, Stanford Univ.
  • Smith, R. J. (1997). Alternative semi-parametric likelihood approaches to generalised method of moments estimation. Econom. J. 107 503--519.
  • Sprent, P. (1966). A generalized least-squares approach to linear functional relationships (with discussion). J. Roy. Statist. Soc. Ser. B 28 278--297.
  • Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Amer. Math. Soc. 54 426--482.
  • White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48 817--838.
  • White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica 50 1--25.